Open Access
Issue
E3S Web Conf.
Volume 288, 2021
International Symposium “Sustainable Energy and Power Engineering 2021” (SUSE-2021)
Article Number 01062
Number of page(s) 5
DOI https://doi.org/10.1051/e3sconf/202128801062
Published online 14 July 2021
  1. M. Kezunovic, C. Zheng, C. Pang, Operational, and Non-Operational Data for Interpreting Alarms, Locating Faults and Preventing Cascades, 2010 43rd Hawaii International Conference on System Sciences (2010) [Google Scholar]
  2. A. Silverstein, J. Follum Dr., High-Resolution, Time-Synchronized Grid Monitoring Devices, North American Synchrophasor Initiative (NASPI) Technical Report (2020) [Google Scholar]
  3. P. Kovalenko, V. Mukhin, M. Senyuk, D. Kornilova, Review of Methods for Power Systems State Estimation and Data Validation Based on Synchrophasor Measurements, 2020 IEEE 61th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON) (2020) [Google Scholar]
  4. I. Idehen, T. Overbye, A similarity-based PMU error detection technique, 2017 19th International Conference on Intelligent System Application to Power Systems (ISAP) (2017) [Google Scholar]
  5. Z. Mao, T. Xu, T. Overbye, Real-time detection of malicious PMU data, 2017 19th International Conference on Intelligent System Application to Power Systems (ISAP) (2017) [Google Scholar]
  6. I. Idehen, Z. Mao, T. Overbye, An emulation environment for prototyping PMU data errors, 2016 North American Power Symposium (NAPS) (2016) [Google Scholar]
  7. I. Idehen, T. Overbye, PMU time error detection using second-order phase angle derivative measurements, 2019 IEEE Texas Power and Energy Conference (TPEC) USA (2019) [Google Scholar]
  8. Q. Zhang, X. Luo, D. Bertagnolli, S. Maslennikov, B. Nubile, PMU data validation at ISO New England, 2013 IEEE Power & Energy Society General Meeting (2013) [Google Scholar]
  9. F. Wang, Q. Liu, F. Xiong, L. Guo, J. Feng, Q. Wang, Data validation and anomaly detection techniques for smart substations, 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2) (2017) [Google Scholar]
  10. I.N. Kolosok, E.S. Korkina, A.E. Mahnitko, Detection of systematic errors in PMU measurements by the power system state estimation methods, 2015 56th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON) (2015) [Google Scholar]
  11. A. Rouhani, A. Abur, Local detection of PMU measurement errors using dynamic state estimators, 2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT) (2017) [Google Scholar]
  12. R. Nair, P. Babu, A method for error detection and correction of the PMU measurements, 2014 International Conference on Computation of Power, Energy, Information and Communication (ICCPEIC) (2014) [Google Scholar]
  13. D. Shi, D.J. Tylavsky, N. Logic, An adaptive method for detection and correction of errors in PMU measurements, IEEE TSG, 3, 1575–1583 (2012) [Google Scholar]
  14. L. Zhang, A. Abur, Impact of tuning on bad data detection of PMU measurements, IEEE PES Innovative Smart Grid Technologies (2012) [Google Scholar]
  15. A. Karpilow, R. Cherkaoui, S. D'Arco, T.D. Duong, Detection of bad PMU data using machine learning techniques, 2020 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT) (2020) [Google Scholar]
  16. K. Mahapatra, N.R. Chaudhuri, R. Kavasseri, Online bad data outlier detection in PMU measurements using PCA feature-driven ANN classifier, 2017 IEEE Power & Energy Society General Meeting (2018) [Google Scholar]
  17. J.M. Lim, C.L. DeMarco, Bad data detection and estimation in high dimensional measurement data, 2017 IEEE Power & Energy Society General Meeting (2018) [Google Scholar]
  18. IEEE Standard for Synchrophasor Measurements for Power Systems, IEEE Std C37.118.1™-2011 (2011). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.