Open Access
Issue
E3S Web Conf.
Volume 289, 2021
International Conference of Young Scientists “Energy Systems Research 2021”
Article Number 07019
Number of page(s) 3
Section Power Engineering
DOI https://doi.org/10.1051/e3sconf/202128907019
Published online 13 July 2021
  1. S. Vaez-Zadeh and E. Jalali, “Combined vector control and direct torque control method for high performance induction motor drives, “ Energy conversion and management, Vol. 48, pp. 3095-3101, 2007. [CrossRef] [Google Scholar]
  2. Casadei D, Profumo F, Serra G, Tani A (2002) FOC and DTC: two viable schemes for induction motors torque control. IEEE Trans Power Electron 17(5):779–787 [CrossRef] [Google Scholar]
  3. Diab AAZ (2017) Implementation of a novel full-order observer for speed sensorless vector control of induction motor drives. Elect Eng 99(3):907–921. [CrossRef] [Google Scholar]
  4. Diab AAZ, Kotin DA, Pankratov VV (2013) Speed control of sensorless induction motor drive based on model predictive control. In: Micro/Nanotechnologies and Electron Devices (EDM), 2013 14th International Conference of Young Specialists on, IEEE conference, vol., no., pp 269–274 [Google Scholar]
  5. I. Rakhmonov, A. Berdishev, N. Niyozov, A. Muratov and U. Khaliknazarov. Development of a scheme for generating the predicted value of specific electricity consumption // CONMECHYDRO – 2020. IOP Conf. Series: Materials Science and Engineering. 883 (2020) 012103. doi:10.1088/1757-899X/883/1/012103 [Google Scholar]
  6. F.A. Hoshimov, I.I. Bakhadirov, M.S. Kurbanbayeva, N.A. Aytbayev. Development of specific standards of energy consumption by types of produced products of the spinning product // RSES 2020. E3S Web of Conferences. 216 (2020) 01169. https://doi.org/10.1051/e3sconf/202021601169 [CrossRef] [Google Scholar]
  7. F.A. Hoshimov, I.I. Bakhadirov, A.A. Alimov, M.T. Erejepov. Forecasting the electric consumption of objects using artificial neural networks // E3S Web of Conferences. 216 (2020) 01170. [CrossRef] [EDP Sciences] [Google Scholar]
  8. I.U. Rakhmonov, F.A. Hoshimov. Development of an algorithm for evaluating the dominant factors that have the greatest impact on the energy intensity of products // ENERGY-21. E3S Web of Conferences. 209 (2020) 07018. https://doi.org/10.1051/e3sconf/202020907018 [CrossRef] [EDP Sciences] [Google Scholar]
  9. Usmanov E.G. Stability in a parallel resonant circuit with active load // RSES 2020. E3S Web of Conferences. 216 (2020) 01160. https://doi.org/10.1051/e3sconf/202021601160 [CrossRef] [Google Scholar]
  10. Usmanov E.G., Khusanov B.M. Phase relations in resonant circuits with a wide falling section on the amplitude characteristic // RSES 2020. E3S Web of Conferences. 216 (2020) 01161. https://doi.org/10.1051/e3sconf/202021601161 [CrossRef] [Google Scholar]
  11. I.U. Rakhmonov, K.M. Reymov and S.H. Dustova. Improvements in industrial energy rationing methods // MIP: Engineering-2020. E3S Web of Conferences. 862 (2020) 062070. doi:10.1088/1757-899X/862/6/062070 [Google Scholar]
  12. I.U. Rakhmonov, K.M. Reymov. Statistical models of renewable energy intermittency // RSES 2020. E3S Web of Conferences. 216 (2020) 01167. https://doi.org/10.1051/e3sconf/202021601167 [CrossRef] [EDP Sciences] [Google Scholar]
  13. I.U. Rakhmonov, N.N. Kurbonov. Analysis of automated software for monitoring energy consumption and efficiency of industrial enterprises // E3S Web of Conferences. 216 (2020) 01178. https://doi.org/10.1051/e3sconf/202021601178 [CrossRef] [EDP Sciences] [Google Scholar]
  14. F.A. Hoshimov, I.U. Rakhmonov, N.N. Niyozov. Technology to reduce energy costs in the electric steel melting shop // ENERGY-21. E3S Web of Conferences. 209 (2020) 07017. https://doi.org/10.1051/e3sconf/202020907017 [CrossRef] [EDP Sciences] [Google Scholar]
  15. I. Bakhadirov, N. Markaev, G. Aslanova, R. Tanatarov, S. Makhmuthonov. Differentiated tariffs of electricity for the improvement of steelmaking Uzbekistan // CONMECHYDRO – 2020. IOP Conf. Series: Materials Science and Engineering. 883 (2020) 012121. doi:10.1088/1757-899X/883/1/012121 [Google Scholar]
  16. A.D. Taslimov. Selection of a complex of parameters of distribution electric networks with respect to technical limitations // ENERGY-21. E3S Web of Conferences. 209 (2020) 07013. https://doi.org/10.1051/e3sconf/202020907013 [CrossRef] [Google Scholar]
  17. Olimjon Toirov, Аllabergan Bekishev, Sardor Urakov and Utkir Mirkhonov E3S Web of Conferences 216, 01116 (2020), https://doi.org/10.1051/e3sconf/202021601116 [EDP Sciences] [Google Scholar]
  18. Olimjon Toirov, Kamoliddin Alimkhodjaev, Nurali Pirmatov and Aziza Kholbutaeva E3S Web of Conferences 216, 01119 (2020), https://doi.org/10.1051/e3sconf/202021601119 [CrossRef] [EDP Sciences] [Google Scholar]
  19. K.M. Reymov, G. Turmanova, S. Makhmuthonov, B. Uzakov. Mathematical models and algorithms of optimal load management of electrical consumers // E3S Web of Conf. 216 (2020) 01166. https://doi.org/10.1051/e3sconf/202021601166 [CrossRef] [EDP Sciences] [Google Scholar]
  20. A.N. Rasulov, M.R. Ruzinazarov, N. Toirova, T.Sh. Alibekova. Graphical-analytical method for constructing load characteristics // RSES 2020. E3S Web of Conferences. 216 (2020) 01171. https://doi.org/10.1051/e3sconf/202021601171 [CrossRef] [Google Scholar]
  21. Yu. Bobozhonov, B. Seytmuratov, B. Fayzullaev, A. Sultonov. Study of the influence of different designs of massive rotor of asynchronous generator on their maximum power // RSES 2020. E3S Web of Conferences. 216 (2020) 01177. https://doi.org/10.1051/e3sconf/202021601177 [CrossRef] [Google Scholar]
  22. Rakhmonov I U, Reymov K M, Najimova A M, Uzakov B T and Seytmuratov BT 2019 Analysis and calculation of optimum parameters of electric arc furnace Journal of Physics: Conference Series 1399 doi:10.1088/17426596/1399/5/055048 [Google Scholar]
  23. Yu.M. Bobozhonov, K.M. Reymov, B.T. Seytmuratov, T.Kh. Khakimov. Research of the dependence of the resistance of asynchronous generators with massive rotors on their design // RSES 2020. E3S Web of Conferences. 216 (2020) 01168. https://doi.org/10.1051/e3sconf/202021601168 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.