Open Access
E3S Web Conf.
Volume 290, 2021
2021 3rd International Conference on Geoscience and Environmental Chemistry (ICGEC 2021)
Article Number 01007
Number of page(s) 4
Section Environmental Chemistry and Chemical Technology Application
Published online 14 July 2021
  1. Wang, Z. Zhang, D. Xiao, X. Su, C. Li, Z. Xue, J. Peng, P. Liao, L. Wang, H. (2020) A highly sensitive and selective sensor for trace uranyl (VI) ion based on a graphene-coated carbon paste electrode modified with ion imprinted polymer. Microchemical Journal, 155:0026-265X. [Google Scholar]
  2. Majid, K. Mohammad, B. Mostafa, N. Akbar, B. Fariborz,O. Sara, S. (2015) Selective and Sensitive Determination of Uranyl Ions in Complex Matrices by Ion Imprinted Polymers-Based Electrochemical Sensor. Electroanalysis, 27: 2458–2467. [Google Scholar]
  3. Sevgi, G. Orhan, G. (2016) A novel electrochemical sensor for selective determination of uranyl ion based on imprinted polymer sol-gel modifified carbon paste electrode. Sensors and Actuators B Chemical [Google Scholar]
  4. Thayyath, A. Jayachandran, N. Peethambaran, L. Divya. (2014) Adsorption and separation behavior of uranium (VI) by 4-vinylpyridine-grafted-vinyltriethoxysilane-cellulose ion imprinted polymer. Journal of Environmental Chemical Engineering, 465: 1–10. [Google Scholar]
  5. Bojdi M K, Behbahani M, Sahragard A, et al. A palladium imprinted polymer for highly selective and sensitive electrochemical determination of ultra-trace of palladium ions[J]. Electrochim Acta, 2014,149:108-116. [Google Scholar]
  6. Metilda P, Prasad K, Kala R, et al. Ion imprinted polymer based sensor for monitoring toxic uranium in environmental samples[J]. Anal Chim Acta, 2007, 582(1):147–153. [Google Scholar]
  7. V. E. Pakade, E. M. Cukrowska, J. Darkwa, G. Darko, N. Torto and L. Chimuka. (2012) Simple and effificient ion imprinted polymer for recovery of uranium from environmental samples. Water Science & Technology, 65.4: 728-736. [Google Scholar]
  8. Zhu, J. Liu, Q. Liu, J. Chen, R. Zhang, H. Yu, J. Zhang, M. Li, R. and Wang, J. (2018) A novel ion-imprinted carbon material induced by hyperaccumulation pathway for the selective capture of uranium. ACS Appl. Mater. Interfaces, DOI: 10.1021/acsami.8b09022. [Google Scholar]
  9. Buhani, Narsito, Nuryono, et al. Desalination and Water Treatment, 2015, 55 (5), 1240. [Google Scholar]
  10. Ren ZQ, Zhu X Y, Du J, et al. Applied Surface Science, 2018, 435, 574. [Google Scholar]
  11. Zhan, Y. Luo, X. Nie, S. et al. (2011) Selective Separation of Cu(II) from Aqueous Solution with a Novel Cu(II) Surface Magnetic Ion-Imprinted Polymer. Industrial & Engineering Chemistry Research, 50: 6355–6361. [Google Scholar]
  12. Zhu B, Zhou L Y, Zhang Q, et al. Desalination and Water Treatment, 2017, 86, 231. [Google Scholar]
  13. Fan H T, Sun X T, Li W X. Journal of Sol-Gel Science and Technology, 2014, 72 (1), 144. [Google Scholar]
  14. Zargar Behrooz, Khazaeifar Ali, Microchimica Acta, 2017, 184 (11), 4521. [Google Scholar]
  15. Li W M, He R, Tan L, et al. Journal of Sol-Gel Science and Technology, 2016, 78 (3), 1. [Google Scholar]
  16. C. Feng, M. Li, M. Li, Q. Zeng, Q. Gan, H. Yang, Synthesis and characterization of a surface-grafted Cd (II) ion-imprinted polymer for selective separation of Cd (II) ion from aqueous solution, Applied Surface Science (2015), [Google Scholar]
  17. Zhang Q G, Wu J Y, Luo X B. RSC Advances, 2016, 6 (18), 14916. [Google Scholar]
  18. Liang Q W, Geng J J, Luo H J, et al. Journal of Molecular Liquids, 2017, 248, 767. [Google Scholar]
  19. Liang, H. Chen, Q. Ma, J. Huang,Y. Shen, X. (2017) Synthesis and characterization of a new ionimprinted polymer for the selective separation of thorium(IV) ions at high acidity. RSC Adv., 2017, 7, 35394 [Google Scholar]
  20. M. Monier, DA Abdel-Latif, Fabrication of Au(III) ionimprinted polymer based on thiol-modifified chitosan, International Journal of Biological Macromolecules [Google Scholar]
  21. Shao L, Wang X, Ren Y, et al. Facile fabrication of magnetic cucurbit[6]uril/graphene oxide composite and application for uranium removal[J]. Chemical Engineering Journal, 2016, 286: 311-319. [Google Scholar]
  22. Zhang Xiaofei. Synthesis of core/shell structural magnetic materials and their adsorption properties of uranium[D]. Harbin: Harbin Engineering University, 2014. [Google Scholar]
  23. Sheng G, Shao X, Li Y, et al. Enhanced removal of uranium (VI) by nanoscale zerovalent iron supported on Na-bentonite and an investigation of mechanism[J]. Journal of Physical Chemistry A, 2014, 118(16): 2952-2958. [Google Scholar]
  24. Hu Jianbang, Yuan Yali, Tang Qiong, et al. Preparation and adsorption of uranyl (VI) of amino-modified magnetic Fe3O4/SiO2 composite materials[J]. Applied Chemical Industry, 2012, 41(12): 2067-2070, 2074. [Google Scholar]
  25. Zhu J, Liu Q, Li Z, et al. Efficient extraction of uranium from aqueous solution using an amino-functionalized magnetic titanate nanotubes[J]. Journal of Hazardous Materials, 2018, 353: 9-17. [Google Scholar]
  26. Xiao, H. Cai,L. et al. (2020) Preparation of metal ion imprinted polymer on magnetic graphene oxide / mil-101 (CR) surface and its selective adsorption of Cu (||) and Pb (||). CHINESE JOURNAL OF APPLIED CHEMISTRY, DOI: 10.11944/j.issn.1000-0518.2020.09.200028. [Google Scholar]
  27. Farzaneh, A. et al. (2019) Application of selective solid-phase extraction using a new core-shell-shellnmagnetic ion-imprinted polymer for the analysis of ultra-trace mercury in serum of gallstone patients. SEPARATION SCIENCE AND TECHNOLOGY, [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.