Open Access
Issue
E3S Web Conf.
Volume 290, 2021
2021 3rd International Conference on Geoscience and Environmental Chemistry (ICGEC 2021)
Article Number 02004
Number of page(s) 4
Section Geological and Hydrological Structure and Environmental Planning
DOI https://doi.org/10.1051/e3sconf/202129002004
Published online 14 July 2021
  1. E. H. Land, and J. J. McCann. Lightness and retinex theory. J. Opt. Soc. Am, 61: 1–11 (1971). [Google Scholar]
  2. E. H. Land. An alternative technique for the computation of the designator in the retinex theory of color vision. Proc. Nat. Acad. Sci., 83: 3078–3080 (1986). [Google Scholar]
  3. D. J. Jobson, Z. Rahman, and G. A. Woodell. Properties and performance of a center/surround retinex. IEEE Trans. Image Processing, 6: 451–462 (1997). [Google Scholar]
  4. D. J. Jobson, Z. Rahman, and G. A. Woodell. A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Trans. Image Processing, 6: 965–976 (1997). [Google Scholar]
  5. Z. Rahman, D. J. Jobson, and G. A. Woodell. Retinex processing for automatic image enhancement. J. Electronic Imaging, 13: 100–110 (2004). [Google Scholar]
  6. G. Orsini, G. Ramponi, P. Carrai, and R. Di Federico. A modified retinex for image contrast enhancement and dynamics control. In: Int. Conf. Image Process., Barcelona. pp. 393-396 (2003). [Google Scholar]
  7. B. Sun, W. Chen, H. Li, W. Tao, and J. Li. Modified luminance based adaptive MSR. In: IEEE ICIG, Chengdu. pp. 116-120 (2007). [Google Scholar]
  8. K. Barnard and B. Funt. Analysis and improvement of multiscale retinex. In: Fifth Color Imaging Conference: Color Science, Systems and Applications, Scottsdale. pp. 221-226 (1997). [Google Scholar]
  9. T. Watanabe, Y. Kuwahara, A. Kojima, and T. Kurosawa. Improvement of color quality with modified linear multi-scale retinex. In: 15th SPIE Symposium on Electronic Imaging, Santa Clara. pp. 59-69 (2003). [Google Scholar]
  10. J. H. Jang, Y. Bae, and J. B. Ra. Multi-sensor image fusion using subband decomposed multiscale retinex. In: 16th IEEE Int. Conf. Image Process., Cairo. pp. 2177-2180 (2009). [Google Scholar]
  11. J. H. Jang, Y. Bae, and J. B. Ra. Contrast-Enhanced Fusion of Multisensor Images Using Subband-Decomposed Multiscale Retinex. IEEE Transactions on Image Processing, 21: 3479-3490 (2012). [Google Scholar]
  12. J. H. Jang, S. D. Kim, and J. B. Ra. Enhancement of optical remote sensing images by subband-decomposed multiscale retinex with hybrid intensity transfer function. IEEE Geosci. Remote Sensing Lett., 8: 983–987 (2011). [Google Scholar]
  13. J. H. JANG, B. CHOI, S. D. Kim, et al. Sub-band decomposed multiscale retinex with space varying gain. In: IEEE Int. Conf. Image Process., San Diego. pp. 3168-3171 (2008). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.