Open Access
Issue
E3S Web Conf.
Volume 290, 2021
2021 3rd International Conference on Geoscience and Environmental Chemistry (ICGEC 2021)
Article Number 02010
Number of page(s) 12
Section Geological and Hydrological Structure and Environmental Planning
DOI https://doi.org/10.1051/e3sconf/202129002010
Published online 14 July 2021
  1. Deer, W.A., Howie, R.A. & Zussman, J. 2009. Rock-forming minerals: Layered silicates excluding micas and clay minerals. London: Geological Society. [Google Scholar]
  2. Dortmann. 1985. Physical properties of rocks and minerals. 1th ed. Trans: Jiang Hongyao. Beijing: Science Press. [Google Scholar]
  3. Gong, Y. 2017. Study on regional geological conditions of Tamusu candidate area, inner mogolia-siting of clay rock high-level radioactive waste disposal repositoty. Dissertation. Nanchang: East China University of technology. [Google Scholar]
  4. Guan, W.C., Liu, X.D. & Liu, P.H. 2014. Geological characteristics of clay rocks in Tamusu area of Bayingobi Basin. World Nuclear Geoscience 31 (02): 95-102. [Google Scholar]
  5. Guo, Q.F., Wu, X., Cai, M.F., Xi, X., Ren, F.H. & Miao, S.J. 2019. Experiment on the strength characteristics and failure modes of granite with pre-existing cracks. Chinese Journal of Engineering 41 (01): 43-52. [Google Scholar]
  6. Hill R. 1952. The elastic behavior of a crystalline aggregate. Proceedings of the Royal Society of London A A65:349-354. [Google Scholar]
  7. Hu, H.Y. 2014. Mechancial properties of clay rocks Tamusu area. Dissertation. Nanchang: East China University of technology. [Google Scholar]
  8. Hu, H.Y., Liu, X.D., Yang, T., Wang, G.B. & Huo, L. 2014. Experimental study and mechanism analysis of mechanical properties of clay rock in Tamusu area. Geotechnical Investigation & Surveying 42 (12): 9-13. [Google Scholar]
  9. Hu, Q.B., Liang, H. A., Yang, T., Liu, X.D, Wang, Y. & Zhang, L.P. 2020. Permeability and Strength Characteristics of Tamusu Deep Clay under Confining Pressure and Osmotic Pressure. Journal of Yangtze River Scientific Research Institute. 25(11): 1-12. [Google Scholar]
  10. Huang, H.E. 2018. Study on Hydrogeological Conditions of Clay rock Pre-selected Section of High-level Radioactive Waste Repository-Taking Tamusu and Suhongtu as Examples. Dissertation. Nanchang: East China University of technology. [Google Scholar]
  11. Kumazawa M. 1969. The elastic constant of polycrystalline rocks and nonelastic behavior inherent to them. Journal of Geophysical Research 74: 5311. [Google Scholar]
  12. Laurence S C. 1997. Site selection and characterization processes for deep geological disposal of high-level nuclear waste. Open-file report. Albuquerque Sandia National Laboratories. [Google Scholar]
  13. Li, S.Z. 2018. Geological Characteristics and Comprehensive Evaluation of Clay rock Pre-selected Section of Bayingobi Formation in Ingejing Depression Inner Mongolia. Dissertation. Nanchang: East China University of technology. [Google Scholar]
  14. Li, X.D. 2010. Sedimentary facies analysis of upper member of Bayingobi formation in Tamusu area of Bayingobi Basin. Journal of Henan Polytechnic University (Natural Science) 29 (S1): 177-180. [Google Scholar]
  15. Ma, J.Y., Zhang, H.Y. & Chen, L. 2020 Research status of public participation in high level radioactive waste disposal abroad: a case study of Finland and Sweden. World Nuclear Geoscience 37 (03): 250-256. [Google Scholar]
  16. Pan, Z.Q. & Qian, Q.H. 2009. Strategic Study on geological disposal of high-level radioactive waste. 1th ed. Beijing: Atomic Energy Press. [Google Scholar]
  17. Rao, G.W. 2018. Study on Characteristics of Surrounding Rock of High-level Radioactive Waste Geological Disposal Reservoir: A Case Study of Mudstone in the Upper Part of the BayinGobi Formation in the Preselected Area of Tamusu in Inner Mongolia. Dissertation. Nanchang: East China University of technology. [Google Scholar]
  18. Reuss A. 1929. Berechnung der fliegrenze vom misch kristallen. Journal of Applied Mathematics and Mechanics 9:49-58. [Google Scholar]
  19. Shu, L.S. 2010. Physical Geology. 3th ed. Beijing: Geological Publishing House. [Google Scholar]
  20. Tiziana, V. & Manika, P. 2003 Amos Nur. Elastic properties of dry clay mineral aggregates, suspensions andsandstones. Geophysical Journal International. 155( 1) : 319-326. [Google Scholar]
  21. Voight W. 1910. Lehrbuch der Kristallphysik. 1th ed Leipzig: Teubner-Verlag. [Google Scholar]
  22. Wan, C. 2018. A Dissertation Submitted to East China University of Technology for Master’s Degree. Dissertation. Nanchang: East China University of technology. [Google Scholar]
  23. Wan, C., Liang, H.A., Wang Y., Chen, Q. & Zhang, J. 2017. Study on the Influence of Mineral Composition and Microstructure on the Mechanical Properties of Clay. Construction Quality 35 (06): 78–82 + 86. [Google Scholar]
  24. Wang, J. 2019 Progress of geological disposal of high-level radioactive waste in China in the 21st century. Atomic Energy Science and Technology 53 (10): 2072-2082. [Google Scholar]
  25. Wang, X.L., Han, Z.H., Zhang, L.Q & Zou, J. REGIONAL ENGINEERING GEOLOGY SUITABILITY ASSESSMENT FOR HIGH-LEVEL RADIOACTIVE WASTE DISPOSAL OF PRE-SELECTED ALXA AREA. Journal of Engineering Geology 26 (06): 1715-1723. [Google Scholar]
  26. Wang, Y.. Liang, H.A., Hu, Q.B., Cheng, H.K., Wan, C. & Xie, Z. 2018. Study on Correlation Between Mineral Composition and Elastic Modulus of Clay Rock in Tamusu. Chongqing Architecture 17 (03): 18-21. [Google Scholar]
  27. Xiang, L., Liu, P.H., Liu, X.D., Liu, S. & Liang, H.A. 2018. Study on screening of favorable areas for high level radioactive waste claystone/mudstone disposal repository in Yingejing sag. China Sciencepaper 13 (21): 2499-2504. [Google Scholar]
  28. Xue, K.X., Liu, S., Liu, X.D., Hu, X.Y., Tiwari, B., Wei, Y.Q. & Liang, H.A. 2016. Review of the Physical, Mechanical and Engineering Properties of Clay Rocks. Science Technology and Engineering 16 (16): 110-121. [Google Scholar]
  29. Yuan, G.X., Zhang, L.Q., Zheng, Q.L., Huang, Z.Q., Li, J.Y., Wang, H.J & Deng, X.B. 2018. PREDICTION OF ROCK MASS QUALITY IN TARGET DEPTH FOR TAMUSU AREA OF ALXA PRE-SELECTED REGION FOR PREDICTION OF ROCK MASS QUALITY IN TARGET DEPTH FOR TAMUSU AREA OF ALXA PRE-SELECTED REGION FOR GEOLOGICAL DISPOSAL OF HIGH-LEVEL NUCLEAR WASTE. Journal of Engineering Geology 26 (06): 1690-1700. [Google Scholar]
  30. Zhang, C.Y., Nie, F.J., Hou, S.R., Wang, J.L., Zhang, L. & Deng, W. 2015. Ore-Controlling Factors and Metallogenic Model of Tamusu Sandstone Type Uranium Deposit in Bayingobi Basin, Inner Mongolia. Bulletin of Geological Science and Technology 34 (01): 140-147. [Google Scholar]
  31. Zuo, J.P., Chai, N.B., Zhao, C. & Liu, M. 2015. Investigation on the Relationship Between of Micro/meso Mineral Composition and Macro Mechanical Behavior of Moutougou Basalt. Journal of Basic Science and Engineering 23 (05): 97-106. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.