Open Access
Issue |
E3S Web Conf.
Volume 292, 2021
2021 2nd International Conference on New Energy Technology and Industrial Development (NETID 2021)
|
|
---|---|---|
Article Number | 03074 | |
Number of page(s) | 6 | |
Section | Environmental Sustainable Development and Industrial Transformation | |
DOI | https://doi.org/10.1051/e3sconf/202129203074 | |
Published online | 09 September 2021 |
- Di Martino, A., et al., The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Molecular Psychiatry, (2014). 19(6): p. 659-667. [Google Scholar]
- Lord, C., et al., Autism spectrum disorder. The Lancet, (2018). 392(10146): p. 508-520. [Google Scholar]
- Maenner, M.J., K.A. Shaw, and J. Baio, Prevalence of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2016. MMWR Surveillance Summaries, (2020). 69(4): p. 1. [Google Scholar]
- Niu, M., et al., Fragile X syndrome: prevalence, treatment, and prevention in China. Frontiers in neurology, (2017). 8: p. 254. [Google Scholar]
- Sledziowska, M., J. Galloway, and S.J. Baudouin, Evidence for a contribution of the Nlgn3/Cyfip1/Fmr1 pathway in the pathophysiology of autism spectrum disorders. Neuroscience, (2020). 445: p. 31-41. [Google Scholar]
- Li, M., et al., Identification of FMR1-regulated molecular networks in human neurodevelopment. Genome research, (2020). 30(3): p. 361-374. [Google Scholar]
- Buxbaum, J.D. and P.R. Hof, The neuroscience of autism spectrum disorders. (2012): Academic Press. [Google Scholar]
- Bernardet, M. and W.E. Crusio, Fmr1 KO mice as a possible model of autistic features. The Scientific World JOURNAL, (2006). 6: p. 1164-1176. [Google Scholar]
- D’Antoni, S., et al., Aberrant mitochondrial bioenergetics in the cerebral cortex of the Fmr1 knockout mouse model of fragile X syndrome. Biological chemistry, (2020). 401(4): p. 497-503. [Google Scholar]
- Darnell, J.C., et al., FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell, (2011). 146(2): p. 247-261. [Google Scholar]
- Budimirovic, D.B. and W.E. Kaufmann, What can we learn about autism from studying fragile X syndrome? Developmental neuroscience, (2011). 33(5): p. 379-394. [Google Scholar]
- Roberts, J.E., et al., Heart activity and autistic behavior in infants and toddlers with fragile X syndrome. American journal on intellectual and developmental disabilities, (2012). 117(2): p. 90-102. [PubMed] [Google Scholar]
- McDuffie, A., et al., Autism spectrum disorder in children and adolescents with fragile X syndrome: within-syndrome differences and age-related changes. American Journal on Intellectual and Developmental Disabilities, (2010). 115(4): p. 307-326. [PubMed] [Google Scholar]
- Abbeduto, L., et al., ASD comorbidity in fragile X syndrome: Symptom profile and predictors of symptom severity in adolescent and young adult males. Journal of autism and developmental disorders, (2019). 49(3): p. 960-977. [PubMed] [Google Scholar]
- Niu, M., et al., Autism symptoms in fragile X syndrome. Journal of child neurology, (2017). 32(10): p. 903-909. [Google Scholar]
- Pilarski, R., PTEN hamartoma tumor syndrome: a clinical overview. Cancers, (2019). 11(6): p. 844. [Google Scholar]
- Mester, J. and C. Eng, PTEN hamartoma tumor syndrome. Handbook of clinical neurology, (2015). 132: p. 129-137. [Google Scholar]
- Nelen, M.R., et al., Novel PTEN mutations in patients with Cowden disease: absence of clear genotype–phenotype correlations. European Journal of Human Genetics, (1999). 7(3): p. 267-273. [Google Scholar]
- Buxbaum, J.D., et al., Mutation screening of the PTEN gene in patients with autism spectrum disorders and macrocephaly. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, (2007). 144(4): p. 484-491. [Google Scholar]
- Rademacher, S. and B.J. Eickholt, PTEN in autism and neurodevelopmental disorders. Cold Spring Harbor perspectives in medicine, (2019). 9(11): p. a036780. [Google Scholar]
- Skelton, P.D., R.V. Stan, and B.W. Luikart, The role of PTEN in neurodevelopment. Molecular neuropsychiatry, (2019). 5(1): p. 60-71. [Google Scholar]
- (!!! INVALID CITATION !!! [22-24]). [Google Scholar]
- Cristofano, A.D., et al., Pten is essential for embryonic development and tumour suppression. Nature genetics, (1998). 19(4): p. 348-355. [Google Scholar]
- Clipperton-Allen, A.E. and D.T. Page, Pten haploinsufficient mice show broad brain overgrowth but selective impairments in autism-relevant behavioral tests. Human molecular genetics, (2014). 23(13): p. 3490-3505. [Google Scholar]
- Charney, D.S., E.J. Nestler, and M. Pamela Sklar, Charney & Nestler’s neurobiology of mental illness. (2017): Oxford University Press. [Google Scholar]
- Courchesne, E., et al., Mapping early brain development in autism. Neuron, (2007). 56(2): p. 399-413. [Google Scholar]
- Lee, H., et al., Constitutional mislocalization of Pten drives precocious maturation in oligodendrocytes and aberrant myelination in model of autism spectrum disorder. Translational psychiatry, (2019). 9(1): p. 1-12. [Google Scholar]
- Tilot, A.K., et al., Germline disruption of Pten localization causes enhanced sex-dependent social motivation and increased glial production. Human molecular genetics, (2014). 23(12): p. 3212-3227. [Google Scholar]
- Fricano-Kugler, C.J., et al., Nuclear excluded autism-associated phosphatase and tensin homolog mutations dysregulate neuronal growth. Biological psychiatry, (2018). 84(4): p. 265-277. [Google Scholar]
- Yates, J.R.W., Tuberous sclerosis. European Journal of Human Genetics, (2006). 14(10): p. 1065-1073. [Google Scholar]
- O’Callaghan, F.J., et al., Prevalence of tuberous sclerosis estimated by capture-recapture analysis. Lancet, (1998). 351(9114): p. 1490. [Google Scholar]
- Northrup, H., D.A. Krueger, and G. International Tuberous Sclerosis Complex Consensus, Tuberous sclerosis complex diagnostic criteria update: recommendations of the 2012 Iinternational Tuberous Sclerosis Complex Consensus Conference. Pediatric neurology, (2013). 49(4): p. 243-254. [Google Scholar]
- Islam, M.P., Tuberous Sclerosis Complex. Seminars in Pediatric Neurology, (2021). 37: p. 100875. [Google Scholar]
- Sancak, O., et al., Mutational analysis of the TSC1 and TSC2 genes in a diagnostic setting: genotype – phenotype correlations and comparison of diagnostic DNA techniques in Tuberous Sclerosis Complex. European Journal of Human Genetics, (2005). 13(6): p. 731-741. [Google Scholar]
- Valerio, N. and C. Paolo, Genetics and Molecular Biology of Tuberous Sclerosis Complex. Current Genomics, (2008). 9(7): p. 475-487. [Google Scholar]
- Capal, J.K., et al., Influence of seizures on early development in tuberous sclerosis complex. Epilepsy & Behavior, (2017). 70: p. 245-252. [Google Scholar]
- Filosa, S., et al., Exploring the possible link between MeCP2 and oxidative stress in Rett syndrome. Free Radical Biology and Medicine, (2015). 88: p. 81-90. [Google Scholar]
- Ramocki, M.B., et al., Autism and other neuropsychiatric symptoms are prevalent in individuals with MeCP2 duplication syndrome. Annals of Neurology, (2009). 66(6): p. 771-782. [Google Scholar]
- Sandweiss, A.J., V.L. Brandt, and H.Y. Zoghbi, Advances in understanding of Rett syndrome and MECP2 duplication syndrome: prospects for future therapies. The Lancet Neurology, (2020). 19(8): p. 689-698. [Google Scholar]
- Khalili Alashti, S., et al., Two novel mutations in the MECP2 gene in patients with Rett syndrome. Gene, (2020). 732: p. 144337. [Google Scholar]
- Ciernia, A.V., et al., Early motor phenotype detection in a female mouse model of Rett syndrome is improved by cross-fostering. Human Molecular Genetics, (2017). 26(10): p. 1839. [Google Scholar]
- Du, F., et al., Acute and crucial requirement for MeCP2 function upon transition from early to late adult stages of brain maturation. Human Molecular Genetics, (2016)(9): p. 1690-1702. [Google Scholar]
- Chen, J., I. Alberts, and X. Li, Dysregulation of the IGF-I/PI3K/AKT/mTOR signaling pathway in autism spectrum disorders. International Journal of Developmental Neuroscience, (2014). 35: p. 35-41. [Google Scholar]
- Stambolic, V., et al., Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell, (1998). 95(1): p. 29-39. [Google Scholar]
- Darnell, J.C. and E. Klann, The translation of translational control by FMRP: therapeutic targets for FXS. Nature neuroscience, (2013). 16(11): p. 1530-1536. [Google Scholar]
- Ehrhart, F., et al., Rett syndrome–biological pathways leading from MECP2 to disorder phenotypes. Orphanet journal of rare diseases, (2016). 11(1): p. 1-13. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.