Open Access
E3S Web Conf.
Volume 292, 2021
2021 2nd International Conference on New Energy Technology and Industrial Development (NETID 2021)
Article Number 03091
Number of page(s) 6
Section Environmental Sustainable Development and Industrial Transformation
Published online 09 September 2021
  1. [COVID Live Update: 166,554,805 Cases and 3,459,730 Deaths from the Coronavirus -Worldometer [WWW Document]. [cited 2021 May 22]; Available from: [Google Scholar]
  2. Emerging Mutations & Variants -CN [WWW Document]. [cited 2021 May 23]; Available from: [Google Scholar]
  3. Coronavirus (COVID-19) [WWW Document]. [cited 2021 May 23]; Available from: [Google Scholar]
  4. Jin, Y., et al., Virology, Epidemiology, Pathogenesis, and Control of COVID-19. Viruses, 2020. 12(4): p. 372. [Google Scholar]
  5. Tu, Y.F., et al., A Review of SARS-CoV-2 and the Ongoing Clinical Trials. International Journal of Molecular Sciences, 2020. 21(7): p. 2657. [Google Scholar]
  6. Samad, N., et al., Convalescent Plasma Therapy for Management of COVID-19: Perspectives and Deployment in the Current Global Pandemic. Risk Management and Healthcare Policy, 2020. 13: p. 2707–2728. [PubMed] [Google Scholar]
  7. Bracha, A. and S.Y. Tan, Emil von Behring (1854-1917): Medicine’s first Nobel laureate. Singapore medical journal, 2011. 52(1): p. 1-2. [PubMed] [Google Scholar]
  8. Winau, F. and R. Winau, Emil von Behring and serum therapy. Microbes & Infection, 2002. 4(2): p. 185-188. [Google Scholar]
  9. Behring and Kitasato, On the development of immunity to diphtheria and tetanus in animals. Dtsch Med Wochenschr, 1966. 90(49): p. 2183. [Google Scholar]
  10. Pucca, M.B., et al., History of Envenoming Therapy and Current Perspectives. other, 2019. 10. [Google Scholar]
  11. Leider, J.P., P. Brunker, and P.M. Ness, Convalescent transfusion for pandemic influenza: preparing blood banks for a new plasma product? Transfusion, 2010. 50(6): p. 1384-1398. [PubMed] [Google Scholar]
  12. Luke, T.C., et al., Meta-analysis: convalescent blood products for Spanish influenza pneumonia: a future H5N1 treatment? Ann Intern Med, 2006. 145(8): p. 599-609. [PubMed] [Google Scholar]
  13. Fischer, J.C., et al., The role of passive immunization in the age of SARS-CoV-2: an update. European Journal of Medical Research, 2020. 25(1): p. 1-6. [PubMed] [Google Scholar]
  14. Duan, K., et al., Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proceedings of the National Academy of Sciences, 2020. 117(17): p. 9490-9496. [Google Scholar]
  15. Marano, G., et al., Convalescent plasma: new evidence for an old therapeutic tool? Blood Transfus, 2016. 14(2): p. 152-7. [PubMed] [Google Scholar]
  16. Jiang, S., C. Hillyer, and L. Du, Neutralizing Antibodies against SARS-CoV-2 and Other Human Coronaviruses. Trends in Immunology, 2020. 41(5). [Google Scholar]
  17. Takehiro, U., O. Kenji, and S. Masaru, Developments in Viral Vector-Based Vaccines. Vaccines, 2014. 2(3): p. 624-641. [CrossRef] [PubMed] [Google Scholar]
  18. Michael, et al., Sabin Vaccine Reversion in the Field: a Comprehensive Analysis of Sabin-Like Poliovirus Isolates in Nigeria. Journal of Virology, 2015. [PubMed] [Google Scholar]
  19. Dediego, M.L., et al., A Severe Acute Respiratory Syndrome Coronavirus That Lacks the E Gene Is Attenuated In Vitro and In Vivo. Journal of Virology, 2006. [PubMed] [Google Scholar]
  20. Macgregor, R.R., et al., First Human Trial of a DNA-Based Vaccine for Treatment of Human Immunodeficiency Virus Type 1 Infection: Safety and Host Response. Journal of Infectious Diseases, 1998. 178(1): p. 92-100. [Google Scholar]
  21. Masters, P.S., The Molecular Biology of Coronaviruses, in Advances in Virus Research. 2006, Academic Press. p. 193-292. [Google Scholar]
  22. Wu, S.-C., Progress and Concept for COVID-19 Vaccine Development. Biotechnology Journal, 2020. 15: p. 2000147. [Google Scholar]
  23. Sks, A., et al., Prospect of SARS-CoV-2 spike protein: Potential role in vaccine and therapeutic development. Virus Research, 2020. 288. [Google Scholar]
  24. Edison, O., et al., Vaxign-ML: Supervised Machine Learning Reverse Vaccinology Model for Improved Prediction of Bacterial Protective Antigens. Bioinformatics, 2020(10): p. 10. [Google Scholar]
  25. Carlson, C.R., et al., Phosphoregulation of Phase Separation by the SARS-CoV-2 N Protein Suggests a Biophysical Basis for its Dual Functions. Molecular Cell, 2020. 80(6): p. 1092-1103.e4. [PubMed] [Google Scholar]
  26. Keller, M.D., et al., SARS-CoV-2–specific T cells are rapidly expanded for therapeutic use and target conserved regions of the membrane protein. Blood, 2020. 136(25): p. 2905-2917. [PubMed] [Google Scholar]
  27. Adedeji, B.J., et al., Therapeutic Drugs for SARS-CoV-2 Treatment: Current State and Perspective. International Immunopharmacology, 2020. [Google Scholar]
  28. Keyaerts, E., et al., In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochemical and Biophysical Research Communications, 2004. 323(1): p. 264-268. [PubMed] [Google Scholar]
  29. Hu, B., et al., Characteristics of SARS-CoV-2 and COVID-19. Nature Reviews Microbiology. [Google Scholar]
  30. Mittal, A., et al., COVID-19 pandemic: Insights into structure, function, and hACE2 receptor recognition by SARS-CoV-2. PLoS Pathogens, 2020. 16(8): p. e1008762. [PubMed] [Google Scholar]
  31. Izda, V., M.A. Jeffries, and A.H. Sawalha, COVID-19: A review of therapeutic strategies and vaccine candidates. Clinical Immunology, 2021. 222: p. 108634. [Google Scholar]
  32. Song, P., et al., Cytokine storm induced by SARS-CoV-2. Clinica Chimica Acta, 2020. 509. [Google Scholar]
  33. Mangalmurti, N. and C.A. Hunter, Cytokine Storms: Understanding COVID-19. Immunity, 2020. 53(1). [CrossRef] [PubMed] [Google Scholar]
  34. Rando, H.M., et al., Pathogenesis, Symptomatology, and Transmission of SARS-CoV-2 through analysis of Viral Genomics and Structure. 2021. [Google Scholar]
  35. Tian, B.P., The potential intermediate hosts for SARS-CoV-2. Frontiers in Microbiology, 2020. [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.