Open Access
Issue
E3S Web Conf.
Volume 292, 2021
2021 2nd International Conference on New Energy Technology and Industrial Development (NETID 2021)
Article Number 03093
Number of page(s) 9
Section Environmental Sustainable Development and Industrial Transformation
DOI https://doi.org/10.1051/e3sconf/202129203093
Published online 09 September 2021
  1. Latef A, Hashem A, Rasool S, J, Arbuscular mycorrhizal symbiosis and abiotic stress in plants: A review, PLant Biol, 59, 407–426 (2016). [Google Scholar]
  2. S Jiao, Z H Peng, J J Qi, et al, Linking Bacterial-Fungal Relationships to Microbial Diversity and Soil Nutrient Cycling, mSystems, 6, e01052–20 (2021). [PubMed] [Google Scholar]
  3. M J Kwak, H G Kong, Rhizosphere microbiome structure alters to enable wilt resistance in tomato, Nat Biotechnol, 36, 4 1–10 (2018). [PubMed] [Google Scholar]
  4. Coats VC, Rumpho ME, The rhizosphere microbiota of plant invaders: an overview of recent advances in the microbiomics of invasive plants, Front. Microbiol., 5, 368 (2014). [PubMed] [Google Scholar]
  5. H Setälä, Mclean M A, Decomposition rate of organic substrates in relation to the species diversity of soil saprophytic fungi, Oecologia, 139, 1, 98–107 (2004). [PubMed] [Google Scholar]
  6. Jin H U, Meng D L, Liu X D, et al, Response of soil fungal community to long-term chromium contamination, Trans. Nonferrous Met. Soc. China, 28, 9, 1838–1846 (2018). [Google Scholar]
  7. Ashworth, A.J.J., DeBruyn, J.M.M., Allen, F.L.L., Radosevich, M., Owens, P.R.R., Microbial community structure is affected by cropping sequences and poultry litterunder long-term no-tillage, Soil Biol. Biochem., 114, 210–219 (2017). [Google Scholar]
  8. Venter Z S, Jacobs K, Hawkins H J, The impact of crop rotation on soil microbial diversity: A meta-analysis, Pedobiologia, 215–223 (2016). [Google Scholar]
  9. WG Jie, B Li, W J Yu, B Y Cai, Analysis of interspecific relationships between Funneliformis mosseae and Fusarium oxysporum in the continuous cropping of soybean rhizosphere soil during the branching period, BIOCONTROL SCI TECHN, 25, 9, 1036–1051(2015). [Google Scholar]
  10. X L Tan, Study on soil microbial diversity, enzyme activity and root exudates of potato under rotation mode, Gansu Agricultural University, (2016). [Google Scholar]
  11. Adams R I, Miletto M, Taylor J W, et al, Dispersal in miscrobes:fungi in indoor air are doiminated by outdoor air and show dispersal limitation at short distances, ISME J, 7, 7, 1173–1262 (2013). [PubMed] [Google Scholar]
  12. L L Nan, J H Tan, Q E Guo, Effects of rotation fallow on soil fungi in semiarid area of Loess Plateau, Acta ecologica Sinica, 20, 23, 8582–8592 (2020). [Google Scholar]
  13. R C Edgar, UPARSE: highly accurate OTU sequences from microbial amplicon reads, Nature Methods, Nat Methodss, 10, 10, 996–998 (2013). [Google Scholar]
  14. Caporaso J G, Kuczynski J, Stombaugh J, QIIME allows analysis of high-throughput community sequencing data, Nature Methods, 7, 5, 335–336 (2010). [PubMed] [Google Scholar]
  15. Q Wang, G M Garrity, J M Tiedje, J R Cole, Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy, Appl. Environ. Microbiol., 73, 16, 5261–5267 (2007). [PubMed] [Google Scholar]
  16. P D Schloss, Gevers D, Westcott S L, Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies, PLoS One, 6, 12, e27310 (2011). [PubMed] [Google Scholar]
  17. Tang J, Xue Z, Daroch M, Ma J, Ann Microbiol NLM, Impact of continuous Salvia miltiorrhiza cropping on rhizosphere actinomycetes and fungi communities, 65, 1267–1275 (2015). [Google Scholar]
  18. Z G Li, C Zu, C Wang, J FYang, H Yu, HS Wu, Different responses of rhizosphere and nonrhizosphere soil microbial communities to consecutive Piper nigrum L. monoculture, Sci. Rep., 6, 1–8 (2016). [CrossRef] [PubMed] [Google Scholar]
  19. Liu H, Pan F J, Han X Z, etal, Acomprehensive analysis of the response of the fungal community structure to long-term continuous cropping in three typical upland crops, J INTEGR AGR, 19, 3, 866–880 (2020). [Google Scholar]
  20. Y H Yao, YL Wang, XH Yao, LK An, Y X Bai, X Li, K L Wu, Effects of different planting patterns on microbial community structure in rhizosphere soil of highland barley, Journal of NWSTUAF, 4, 1–10 (2021). [Google Scholar]
  21. G H Wang, G W Zhao, H W Zhao, et al, Changes of microbial community structure in rhizosphere soil of Flue-cured Tobacco under different planting systems, Heilongjiang Agricultural Sciences, 11, 26–30 (2011). [Google Scholar]
  22. L L Nan, J H Tan, Q N Guo, Effects of rotation fallow on soil fungi in semiarid area of Loess Plateau, Acta ecologica Sinica, 40, 23, 8582–8592 (2020). [Google Scholar]
  23. J Yuan, T Wen, H Zhang, et al, Predicting disease occurrence with high accuracy based on soil macroecological patterns of Fusarium wilt, ISME J, (2020). [Google Scholar]
  24. Z X Liu, J J Liu, Z H Yu, et al, Long-term continuous cropping of soybean is comparable to crop rotation in mediating microbial abundance, diversity and community composition, Soil Tillage Res, 197(2020). [Google Scholar]
  25. M Turner, The evolutionary tree of fungi grows a new branch, Nature News, 11 May 2011 [2014-1031]. doi:10.1038/news.2011.285. [Google Scholar]
  26. H Kauserud, Svegården IB, C Decock, et al, Hybridization among cryptic species of the cellar fungus Coniophora puteana (Basidiomycota), Mol Ecol, 16, 2, 389–399 (2010). [Google Scholar]
  27. Y Z Guo, Phylogeny and taxonomic identification of chaetomiaceae fungi, Northwest University of agriculture and forestry science and technology, 2012. [Google Scholar]
  28. C. H. Kong, P. Wang, H Zhao, et al, Impact of allelochemical exuded from allelopathic rice on soil microbial community, Soil Biol. Biochem., 40, 1862–1869 (2008). [Google Scholar]
  29. A. J. Ashworth, De Bruyn, et al, Microbial community structure is affected by cropping sequences and poultry litter under long-term no-tillage, Soil Biol. Biochem., 114, 210–219 (2017). [Google Scholar]
  30. F Pan., A. G. Xue, N. B. McLaughlin, et al, Colonization of Clonostachys rosea on soybean root grown in media inoculated with Fusarium graminearum, Plant Soil, 63, 564–569 (2013). [Google Scholar]
  31. Z. Shen, C. R. Penton, C. Xue, et al, Banana fusarium wilt disease incidence is influenced by shifts of soil microbial communities under different monoculture spans, Microb Ecol, 75, 739–750 (2018). [PubMed] [Google Scholar]
  32. Z L Yuan, X Y Pan, J Wei, et al, Symbiotic system of forest trees and its mechanism of action: a case study of poplar, Acta Zoologica Sinica, 39, 1, 385–401 (2019). [Google Scholar]
  33. L Bai, J Q Cui, W G Jie, et al, Analysis of the community compositions of rhizosphere fungi in soybeans continuous cropping fields, MICROBIOL RES, 180, 49–56 (2015). [PubMed] [Google Scholar]
  34. W Wei, Y Xu, S Li, et al, Developing suppressive soil for root diseases of soybean withcontinuous long-term cropping of soybean in black soil of Northeast China, Acta Agriculturae Scandinavica, Section B — Soil & Plant Science., 65, 279–285 (2015). [Google Scholar]
  35. X U Jing, De X U, L J Wang, et al, Biological Characteristics on Plectosphaerella cucumerina of Plectosphaerella Tomato Wilt Causal Agent Journal of Shenyang Agricultural University, (2014). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.