Open Access
Issue
E3S Web Conf.
Volume 293, 2021
2021 3rd Global Conference on Ecological Environment and Civil Engineering (GCEECE 2021)
Article Number 02003
Number of page(s) 4
Section Environmental Energy and Civil Engineering and Water Conservancy Construction
DOI https://doi.org/10.1051/e3sconf/202129302003
Published online 23 July 2021
  1. Z.-Z. Bai, B.N. Parlett, Z.-Q. Wang, On generalized successive overrelaxation methods for augmented linear systems, Numerische Mathematik 102 (2005) 1–38. [Google Scholar]
  2. M. Benzi, G.H. Golub, J. Liesen, Numerical solution of saddle point problems, Acta Numerica 14 (2005) 1–137. [Google Scholar]
  3. Y. Cao, Regularized DPSS preconditioners for non-Hermitian saddle point problems, Applied Mathematics Letters 84 (2018) 96–102. [Google Scholar]
  4. Y. Cao, J.-L. Dong, Y.-M. Wang, A relaxed deteriorated PSS preconditioner for nonsym-metricsaddle point problems from the steady Navier-Stokes equation, Journal of Computational and Applied Mathematics 273 (2015) 41–60. [Google Scholar]
  5. J. Chiu, L. Davidson, A. Dutta, J. Gou, K.C. Loy, M. Thom, D. Trenev, Efficient and robust solution strategies for saddle-point systems, University of Minnesota, Institute for Mathematics and Its Applications (2014). Retrieved from the University of Minnesota Digital Conservancy. http://hdl.handle.net/11299/181496. [Google Scholar]
  6. G.H. Golub, X. Wu, J.-Y. Yuan, SOR-like methods for augmented systems, BIT 41 (2001) 71–85. [Google Scholar]
  7. Y. Liu, C.-Q. Gu, Variant of greedy randomized Kaczmarz for ridge regression, Applied Numerical Mathematics 143 (2019) 223–246. [Google Scholar]
  8. Y.-Q. Niu, B. Zheng, A greedy block Kaczmarz algorithm for solving large-scale linear systems, Applied Mathematics Letters 104 (2020) 106294. [Google Scholar]
  9. J.-Y. Pan, M.K. Ng, Z.-Z. Bai, New preconditioners for saddle point problems, Applied Mathematics and Computation 172 (2006) 762–771. [Google Scholar]
  10. Y. Wei, X. Yu, R. Zhang, Preconditioned conjugate gradient method and generalized successive over relaxation method for the weighted least squares problems, International Journal of Computer Mathematics 81 (2004) 203–214. [Google Scholar]
  11. J.-J. Zhang, A new greedy Kaczmarz algorithm for the solution of very large linear systems. Applied Mathematics Letters 91 (2019) 207–212. [Google Scholar]
  12. J. Zhang, C. Gu, A variant of the deteriorated PSS preconditioner for nonsymmetric saddle point problems, BIT 56 (2016) 587–604. [Google Scholar]
  13. B. Zheng, K. Wang, Y. Wu, SSOR-like methods for saddle point problems, International Journal of Computer Mathematics 86 (2009) 1405–1423. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.