Open Access
E3S Web Conf.
Volume 297, 2021
The 4th International Conference of Computer Science and Renewable Energies (ICCSRE'2021)
Article Number 01007
Number of page(s) 10
Published online 22 September 2021
  1. S. Lu, J. Gao, H. Tong, S. Yin, X. Tang, and X. Jiang, “Model establishment and operation optimization of the casing PCM radiant floor heating system,” Energy, vol. 193, p. 116814, 2020. [Google Scholar]
  2. G. Tuna and V. E. Tuna, “The asymmetric causal relationship between renewable and NONRENEWABLE energy consumption and economic growth in the ASEAN-5 countries,” Resour. Policy, vol. 62, no. November 2018, pp. 114–124, 2019. [Google Scholar]
  3. M. Papiez, S. Smiech, and K. Frodyma, “Effects of renewable energy sector development on electricity consumption - Growth nexus in the European Union,” Renew. Sustain. Energy Rev., vol. 113, no. July, p. 109276, 2019. [Google Scholar]
  4. H. Akeiber et al., “A review on phase change material (PCM) for sustainable passive cooling in building envelopes,” Renew. Sustain. Energy Rev., vol. 60, pp. 1470–1497, 2016. [CrossRef] [Google Scholar]
  5. S. Kaba, K. Achoubir, and A. Cheddadi, “An enhanced numerical approach for convection phase change problems: A solution of tin melting problem,” Case Stud. Therm. Eng., vol. 18, no. October 2019, p. 100585, 2020. [Google Scholar]
  6. M. M. El Idi and M. Karkri, “Heating and cooling conditions effects on the kinetic of phase change of PCM embedded in metal foam,” Case Stud. Therm. Eng., vol. 21, no. December 2019, p. 100716, 2020. [Google Scholar]
  7. X. Meng, L. Meng, J. Zou, and F. He, “Influence of the Copper Foam Fin (CFF) shapes on thermal performance of Phase-Change Material (PCM) in an enclosed cavity,” Case Stud. Therm. Eng., vol. 23, no. December 2020, p. 100810, 2021. [Google Scholar]
  8. K. Faraj, M. Khaled, J. Faraj, F. Hachem, and C. Castelain, “Phase change material thermal energy storage systems for cooling applications in buildings: A review,” Renew. Sustain. Energy Rev., no. November, p. 109579, 2019. [Google Scholar]
  9. Z. A. Al-Absi, M. I. Mohd Hafizal, M. Ismail, A. Mardiana, and A. Ghazali, “Peak indoor air temperature reduction for buildings in hot-humid climate using phase change materials,” Case Stud. Therm. Eng., vol. 22, no. September, p. 100762, 2020. [Google Scholar]
  10. A. V. Sá, M. Azenha, H. De Sousa, and A. Samagaio, “Thermal enhancement of plastering mortars with Phase Change Materials: Experimental and numerical approach,” Energy Build., vol. 49, pp. 16–27, 2012. [Google Scholar]
  11. P. Schossig, H. M. Henning, S. Gschwander, and T. Haussmann, “Micro-encapsulated phase-change materials integrated into construction materials,” Sol. Energy Mater. Sol. Cells, vol. 89, no. 2-3, pp. 297–306, 2005. [Google Scholar]
  12. F. Kuznik, J. Virgone, and K. Johannes, “In-situ study of thermal comfort enhancement in a renovated building equipped with phase change material wallboard,” Renew. Energy, vol. 36, no. 5, pp. 1458–1462, 2011. [Google Scholar]
  13. A. M. Borreguero, M. Luz Sanchez, J. L. Valverde, M. Carmona, and J. F. Rodriguez, “Thermal testing and numerical simulation of gypsum wallboards incorporated with different PCMs content,” Appl. Energy, vol. 88, no. 3, pp. 930–937, 2011. [Google Scholar]
  14. A. Bontemps, M. Ahmad, K. Johanns, and H. Sallée, “Experimental and modelling study of twin cells with latent heat storage walls,” Energy Build., vol. 43, no. 9, pp. 2456–2461, 2011. [Google Scholar]
  15. A. Castell, I. Martorell, M. Medrano, G. Pérez, and L. F. Cabeza, “Experimental study of using PCM in brick constructive solutions for passive cooling,” Energy Build., vol. 42, no. 4, pp. 534–540, 2010. [Google Scholar]
  16. A. C. Evers, M. A. Medina, and Y. Fang, “Evaluation of the thermal performance of frame walls enhanced with paraffin and hydrated salt phase change materials using a dynamic wall simulator,” Build. Environ., vol. 45, no. 8, pp. 1762–1768, 2010. [Google Scholar]
  17. M. A. Medina, J. B. King, and M. Zhang, “On the heat transfer rate reduction of structural insulated panels (SIPs) outfitted with phase change materials (PCMs),” Energy, vol. 33, no. 4, pp. 667–678, 2008. [Google Scholar]
  18. L. Royon, L. Karim, and A. Bontemps, “Thermal energy storage and release of a new component with PCM for integration in floors for thermal management of buildings,” Energy Build., vol. 63, pp. 29–35, 2013. [Google Scholar]
  19. D. Li, Y. Wu, B. Wang, C. Liu, and M. Arici, “Optical and thermal performance of glazing units containing PCM in buildings: A review,” Constr. Build. Mater., vol. 233, p. 117327, 2020. [Google Scholar]
  20. Z. Ben Zaid, A. Tilioua, I. Lamaamar, O. Ansari, H. Souli, and M. A. Hamdi Alaoui, “An experimental study of the efficacy of integrating a phase change material into a clay-straw wall in the Drâa-Tafilalet Region (Errachidia Province), Morocco,” J. Build. Eng., vol. 32, no. July, 2020. [Google Scholar]
  21. A. Laborel-Préneron, C. Magniont, and J. E. Aubert, “Hygrothermal properties of unfired earth bricks: Effect of barley straw, hemp shiv and corn cob addition,” Energy Build., vol. 178, pp. 265–278, 2018. [Google Scholar]
  22. E. M. Alawadhi and H. J. Alqallaf, “Building roof with conical holes containing PCM to reduce the cooling load: Numerical study,” Energy Convers. Manag., vol. 52, no. 8-9, pp. 2958–2964, 2011. [Google Scholar]
  23. Z. Aketouane et al., “Energy savings potential by integrating Phase Change Material into hollow bricks: The case of Moroccan buildings,” Build. Simul., vol. 11, no. 6, pp. 1109–1122, 2018. [Google Scholar]
  24. A. Joulin, Z. Younsi, L. Zalewski, S. Lassue, D. R. Rousse, and J. P. Cavrot, “Experimental and numerical investigation of a phase change material: Thermal-energy storage and release,” Appl. Energy, vol. 88, no. 7, pp. 2454–2462, 2011. [Google Scholar]
  25. R. Guechchati, M. A. Moussaoui, A. Mezrhab, and A. Mezrhab, “Reducing energy consumption of habitat located in eastern region of Morocco,” Appl. Sol. Energy (English Transl. Geliotekhnika), vol. 48, no. 1, pp. 33–37, 2012. [Google Scholar]
  26. ISO 6946, “Building components and building elements - Thermal resistance and thermal transmittance - Calculation method. ISO - International Organization for Standardization.,” vol. 0, 2007. [Google Scholar]
  27. ADEREE, “Règlement Thermique de Construction au Maroc - Version simplifiée,” 2014. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.