Open Access
Issue
E3S Web Conf.
Volume 297, 2021
The 4th International Conference of Computer Science and Renewable Energies (ICCSRE'2021)
Article Number 01038
Number of page(s) 6
DOI https://doi.org/10.1051/e3sconf/202129701038
Published online 22 September 2021
  1. IRENA. Renewable Power Generation Costs in 2017; International Renewable Energy Agency: Abu Dhabi, UAE, 2018. Available online: https://www.irena.org//media/Files/IRENA/Agency/Publication/2018/Jan/IRENA_2017_Power_Costs_2018.pdf (accessed on 3 March 2019). [Google Scholar]
  2. Global Wind Statistics 2017. Global Wind Energy Council (GWEC), February 2018. Available online: http://gwec.net/wpcontent/uploads/vip/GWEC_PRstats2017_EN-003_FINAL.pdf (accessed on 3 March 2019). [Google Scholar]
  3. World Energy Perspectives 2016. EXECUTIVE SUMMARY.World Energy Council. Available online: https://www.worldenergy.org/wpcontent/uploads/2016/09/Resilience_Managing-cyber-risks_Exesummary.pdf (accessed on 3 March 2019). [Google Scholar]
  4. The shift Project Data Portal. Available online: http://www.tsp-data-portal.org/all-datasets (accessed on 3 March 2019). [Google Scholar]
  5. BP Statistical Review ofWorld Energy. June 2017. Available online: https://www.bp.com/content/dam/bpcountry/de_ch/PDF/bp-statistical-review-of-worldenergy-2017-full-report.pdf (accessed on 3 March 2019). [Google Scholar]
  6. Environmental Impacts of Wind Power. Available online: https://www.ucsusa.org/cleanenergy/renewableenergy/environmental-impacts-wind-power (accessed on 3 March 2019). [Google Scholar]
  7. Mosetti, G.; Poloni, C.; Diviacco, B. Optimization of wind turbine positioning in large wind farms by means of a genetic algorithm. J. Wind Eng. Ind. Aerodyn. 1994, 51, 105–116. [CrossRef] [Google Scholar]
  8. 2014 Wind Technologies Market Report; US Department of Energy, Wind and Water Power Technologies O_ce: Berkeley, CA, USA, 2015. [Google Scholar]
  9. Lindvig, K. The installation and servicing of o_shore wind farms. In European Forum for Renewable Energy Sources; A2SEA A/S: Fredericia, Denmark, 2010. [Google Scholar]
  10. Saraswati, N.; Stehly, T.; Dewan, A.; Delmarre, A. Operation and Maintenance Map of U.S. O_shore Wind Farms; ECN-E-17-028. The Netherlands, November 2017. Available online: https://publicaties.ecn.nl/PdfFetch.aspx?nr=ECN-E--17-028 (accessed on 3 March 2019). [Google Scholar]
  11. Wind Farm Lifecycle. Available online: https://canwea.ca/communities/planning-a-wind-farm/ (accessed on 3 March 2019). [Google Scholar]
  12. Hou, P.; Enevoldsen, P.; Hu, W.; Chen, C.; Chen, Z. O_shore wind farm repowering optimization. Appl. Energy 2017, 208, 834–844. [CrossRef] [Google Scholar]
  13. Topham, E.; McMillan, D. Sustainable decommissioning of an o_shore wind farm. Renew. Energy 2017, 102, 470–480. [CrossRef] [Google Scholar]
  14. Sommer, A.; Hansen, K. Wind Resources at Horns Rev; Technical Report, Report No. D-160949; TechWise A/S:Fredericia, Denmark, December 2002; p. 69. [Google Scholar]
  15. Jensen, L.; Morch, C.; Sorensen, P.; Svendsen, K.H. Wake Measurements from the Horns Rev Wind Farm; EWEC:London, UK, 2004; pp. 22–25. [Google Scholar]
  16. Overview of the Energy Sector. Available online: https://ens.dk/en/our-services/statistics-data-key-figuresand-energy-maps/overview-energy-sector (accessed on 3 March 2019). [Google Scholar]
  17. Barthelmie, R.; Hansen, K.; Frandsen, S.; Rathmann, O.; Schepers, J.; Schlez, W.; Phillips, J.; Rados, K.; Zervos, A.; Politis, E.; et al. Modelling and measuring flow and wind turbine wakes in large wind farmso_shore. Wind Energy 2009, 12, 431–444. [CrossRef] [Google Scholar]
  18. Rathmann, O.; Barthelmie, R.; Frandsen, S. Wind turbine wake model for wind farm power production. In Proceedings of the EuropeanWind Energy Conference, Athens, Greece, 27 February-2 March 2006. [Google Scholar]
  19. Barthelmie, R.; Pryor, S.; Frandsen, S.; Hansen, K.; Schepers, J.; Rados, K.; Schlez, W.; Neubert, A.; Jensen, L.; Neckelmann, S. Quantifying the impact of wind turbine wakes on power output at o_shore wind farms. J. Atmos. Ocean. Technol. 2010, 27, 1302–1317. [CrossRef] [Google Scholar]
  20. Frandsen, S.; Barthelmie, R.; Pryor, S.; Rathmann, O.; Larsen, S.; Hojstrup, J.; Thogersen, M. Analytical modelling of wind speed deficit in large o_shore wind farms. Wind Energy 2006, 9, 39–53. [CrossRef] [CrossRef] [Google Scholar]
  21. Frandsen, S.; Rathmann, O.; Barthelmie, R.; Jorgensen, H.; Badger, J.; Hansen, K.; Ott, S.; Rethore, P.; Larsen, S.; Jensen, L. The making of a second-generation wind farm e_ciency model complex. Wind Energy 2009, 12, 445–458. [CrossRef] [Google Scholar]
  22. Beaucage, P.; Robinson, N.; Brower, M.; Alonge, C. Overview of six commercial and research wake models for large o_shore wind farms. In Proceedings of the European Wind Energy Conference & Exhibition; European Wind Energy Association (EWEA 2012), Copenhagen, Denmark, 16-19 April 2012. [Google Scholar]
  23. Rivas, R.; Clausen, J.; Hansen, K.; Jensen, L. Solving the turbine positioning problem for large o_shore windfarms by simulated annealing. Wind Eng. 2009, 33, 287–297. [CrossRef] [Google Scholar]
  24. Vezyris, C. O_shore Wind Farm Optimization Investigation of Unconventional and Random Layouts. Master’s Thesis, TU Delft, Delft, The Netherlands, 2012. [Google Scholar]
  25. Park, J.; Law, K. Layout optimization for maximizing wind farm power production using sequential convex programming. Appl. Energy 2015, 151, 320–334. [CrossRef] [Google Scholar]
  26. Abdulrahman, M.; Wood, D. Investigating the power-COE trade-off for wind farm layout optimization considering commercial turbine selection and hub height variation. Renew. Energy 2017, 102, 267–516. [CrossRef] [Google Scholar]
  27. Feng, J.; Shen, W.Z. Modelling wind for wind farm layout optimization using joint distribution of wind speed and wind direction. Energies 2015, 8, 3075–3092. [CrossRef] [Google Scholar]
  28. Herbert-Acero, J.-F.; Franco-Acevedo, J.-R.; Valenzuela-Rendon, M.; Probst-Oleszewski, O. Linear wind farm layout optimization through computational intelligence. In Proceedings of the 8th Mexican International Conference on Artificial Intelligence, Guanajuato, Mexico, 9-13 November 2009; pp. 692–703. [Google Scholar]
  29. Tesauro, A.; Réthoré, P.-E.; Larsen, G. State of the art of wind farm optimization. In Proceedings of the European Wind Energy Conference & Exhibition; European Wind Energy Association (EWEA 2012), Copenhagen, Denmark, 16-19 April 2012. [Google Scholar]
  30. Chowdhury, S.; Zhang, J.; Messac, A.; Castillo, L. Optimizing the arrangement and the selection of turbines for wind farms subject to varying wind conditions. Renew. Energy 2013, 52, 273–282. [CrossRef] [Google Scholar]
  31. Chen, Y.; Li, H.; Jin, K.; Song, Q. Wind farm layout optimization using genetic algorithm with di_erent hub height wind turbines. Energy Convers. Manag. 2013, 70, 56–65. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.