Open Access
Issue
E3S Web Conf.
Volume 300, 2021
2021 2nd International Conference on Energy, Power and Environmental System Engineering (ICEPESE2021)
Article Number 01021
Number of page(s) 5
Section Energy and Power Engineering
DOI https://doi.org/10.1051/e3sconf/202130001021
Published online 06 August 2021
  1. Kumagai, S., and Isoda, H. (1957). Combustion of fuel droplets in a falling chamber. Symposium (International) on Combustion, 6(1), 726-731. [Google Scholar]
  2. Friedman, R. and Ruff, G. A. (2003). Spacecraft Fire Safety 1956 to 1999. ntrs.nasa.gov. [Google Scholar]
  3. Zhang, X. (2004). Research advances on microgravity combustion. Adv Mech, 34 (4), 507-528. [Google Scholar]
  4. Nagachi, M., Mitsui, F., Citerne, J. M., Dutilleul, H., Guibaud, A., Jomaas, G., Fujita, O. (2018). Can a spreading flame over electric wire insulation in concurrent flow achieve steady propagation in microgravity? Proceedings of the Combustion Institute. [Google Scholar]
  5. He, H., Zhang, Q., Tu, R., Zhao, L., Liu, J., & Zhang, Y. (2016). Molten thermoplastic dripping behavior induced by flame spread over wire insulation under overload currents. Journal of Hazardous Materials, 320, 628-634. [PubMed] [Google Scholar]
  6. Shih, H. Y., T’ien, J. (2003). A three-dimensional model of steady flame spread over a thin solid in low-speed concurrent flows. Combustion Theory and Modelling, 7(4), 677-704. [Google Scholar]
  7. Mikami, M., Oyagi, H., Kojima, N., Wakashima, Y., Kikuchi, M., & Yoda, S. (2006). Microgravity experiments on flame spread along fuel-droplet arrays at high temperatures. Combustion and Flame, 146(3), 391-406. [Google Scholar]
  8. Kikuchi, M., Wakashima, Y., Yoda, S., & Mikami, M. (2005). Numerical study on flame spread of an n-decane droplet array in different temperature environment under microgravity. Proceedings of the Combustion Institute, 30(2), 2001-2009. [Google Scholar]
  9. Mikami, M., Watari, H., Hitose, T., Seo, T., Saputro, H., Moriue, O., & Kikuchi, M. (2017). Flame spread of droplet-cloud elements with two-droplet interaction in microgravity. Journal of Thermal Science and Technology, 12(2), JTST0028–JTST0028. [Google Scholar]
  10. Kobayashi, H., Park, J., Iwahashi, T., & Niioka, T. (2002). Microgravity experiments on flame spread of an n-decanedroplet array in a high-pressure environment. Proceedings of the Combustion Institute, 29(2), 2603-2610. [Google Scholar]
  11. Guibaud, A., Citerne, J.-M., Consalvi, J.-L., Torero, J. L., Fujita, O., Kikuchi, M., Legros, G. (2020). Accessing the soot-related radiative heat feedback in a flame spreading in microgravity: optical designs and associated limitations. Proceedings of the Combustion Institute. [Google Scholar]
  12. Kong, W., & Liu, F. (2009). Effects of Gravity on Soot Formation in a Coflow Laminar Methane/Air Diffusion Flame. Microgravity Science and Technology, 22(2), 205-214. [Google Scholar]
  13. Kong, W., & Liu, F. (2009). Numerical study of the effects of gravity on soot formation in laminar coflow methane/air diffusion flames under different air stream velocities. Combustion Theory and Modelling, 13(6), 993-1023. [Google Scholar]
  14. Jeon B.H., Fujita O., Yuji Nakamura Y., & Ito H. (2007). Effect of Co-Axial Flow Velocity on Soot Formation in a Laminar Jet Diffusion Flame under microgravity. Journal of Thermal Science and Technology, 2, 281-290. [Google Scholar]
  15. Ma, B., Cao, S., Giassi, D., Stocker, D. P., Takahashi, F., Bennett, B. A. V., … Long, M. B. (2015). An experimental and computational study of soot formation in a coflow jet flame under microgravity and normal gravity. Proceedings of the Combustion Institute, 35(1), 839-846. [Google Scholar]
  16. Aalburg, C., Diez, F. J., Faeth, G. M., Sunderland, P. B., Urban, D. L., & Yuan, Z.-G. (2005). Shapes of nonbuoyant round hydrocarbon-fueled laminar-jet diffusion flames in still air. Combustion and Flame, 142(1-2), 1-16. [Google Scholar]
  17. Cao, S., Ma, B., Bennett, B. A. V., Giassi, D., Stocker, D. P., Takahashi, F., … Smooke, M. D. (2015). A computational and experimental study of coflow laminar methane/air diffusion flames: Effects of fuel dilution, inlet velocity, and gravity. Proceedings of the Combustion Institute, 35(1), 897-903. [Google Scholar]
  18. Charest, M. R. J., Groth, C. P. T., & Gülder, Ö. L. (2011). A numerical study on the effects of pressure and gravity in laminar ethylene diffusion flames. Combustion and Flame, 158(10), 1933-1945. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.