Open Access
Issue
E3S Web Conf.
Volume 302, 2021
2021 Research, Invention, and Innovation Congress (RI2C 2021)
Article Number 02007
Number of page(s) 8
Section Environmental Science and Engineering
DOI https://doi.org/10.1051/e3sconf/202130202007
Published online 10 September 2021
  1. I. Richter, J. Thøgersen, C.A. Klöckner, Sustainable seafood consumption in action : relevant behaviors and their predictors, Sustainability, 9 (2017): 1-19 [CrossRef] [Google Scholar]
  2. S. I. Aspmo, S. J. Horn, V.G.H. Eijsink, Hydrolysates from Atlantic cod (Gadus morhua L.) viscera as components of microbial growth media, Process Biochemistry, 40 (2005): 3714-3722 [Google Scholar]
  3. O. Martínez-Alvarez, S. Chamorro, A. Brenes, Protein hydrolysates from animal processing byproducts as a source of bioactive molecules with interest in animal feeding: A review, Food Research International, 73 (2015): 204-212 [Google Scholar]
  4. M. Chalamaiah, B. Dinesh Kumar, R. Hemalatha, T. Jyothirmayi, Fish protein hydrolysates: proximate composition, amino acid composition, antioxidant activities and applications: a review, Food Chemistry, 135 (2012): 3020–3038 [PubMed] [Google Scholar]
  5. M. Chalamaiah, W. Yu, J. Wu, Immunomodulatory and anticancer protein hydrolysates (peptides) from food proteins: A review, Food Chemistry, 245 (2017): 205–222 [PubMed] [Google Scholar]
  6. P.J. García-Moreno, I. Batista, C. Pires, N. M. Bandarra, F. J. Espejo-Carpio, A. Guadix, and E.M. Guadix, Antioxidant activity of protein hydrolysates obtained from discarded Mediterranean fish species, Food Research International, 65 (2014): 469-476 [Google Scholar]
  7. N.A. Zakaria, N.M. Sarbon, Physicochemical properties and oxidative stability of fish emulsion sausage as influenced by snakehead (Channa striata) protein hydrolysate, LebensmittelWissenschaft & Technologie, 94 (2018): 13-19 [Google Scholar]
  8. O. Villamil, H. Váquiro, J. F. Solanilla, Fish viscera protein hydrolysates: Production, potential applications on functional and bioactive properties, Food Chemistry, 224 (2017):160-171 [PubMed] [Google Scholar]
  9. A. Noman, Y. Xu, W. Q. AL-Bukhaiti, S. M. Abed, A. H. Ali, A. H. Ramadhan, W. Xia, Influence of enzymatic hydrolysis conditions on the degree of hydrolysis and functional properties of protein hydrolysate obtained from Chinese sturgeon (Acipenser sinensis) by using papain enzyme, Process Biochemistry, 67 (2018): 19-28 [Google Scholar]
  10. F. Alavi, M. Jamshidian, K. Rezaei, Applying native proteases from melon to hydrolyze kilka fish proteins (Clupeonella cultriventris caspia) compared to commercial enzyme Alcalase, Food Chemistry, 277 (2019): 314-322 [PubMed] [Google Scholar]
  11. M.S. Benhabiles, N. Abdi, N. Drouiche, H. Lounici, A. Pauss, M.F.A. Goosen, N. Mameri, Fish protein hydrolysate production from sardine solid waste by crude pepsin enzymatic hydrolysis in a bioreactor coupled to an ultrafiltration unit, Materials Science and Engineering: C, 32 (2012): 922-928 [Google Scholar]
  12. O. Villamil, H. Váquiro, J. F. Solanilla, Fish viscera protein hydrolysates: Production, potential applications and functional and bioactive properties, Food Chemistry, 24 (2017): 160-171 [Google Scholar]
  13. N.R.A. Halim, H.M. Yusof, N.M. Sarbon, Functional and bioactive properties of fish protein hydolysates and peptides: A comprehensive review, Trends in Food Science and Technology, 51 (2016): 24-33 [Google Scholar]
  14. H.C. Tran, H.A.T. Le, T.T. Le, V.M. Phan, Effects of enzyme types and extraction conditions on protein recovery and antioxidant properties of hydrolysed proteins derived from defatted Lemna minor, Applied Science and Engineering Progress, (2021) DOI: 10.14416/j.asep.2021.05.003 [Google Scholar]
  15. T. Aspevik, H. Egede-Nissen, Ĺ. Oterhals, A systematic approach to the comparison of cost efficiency of endopeptidases for the hydrolysis of Atlantic salmon (Salmo salar) by-products. Faculty of Food Technology and Biotechnology. 54 (2016): 421-431 [Google Scholar]
  16. A.M. Liceaga-Gesualdo, E.C.Y Li-Chan, Functional properties of fish protein hydrolysate from Herring (Clupea harengus). Journal of Food Science, 64 (1999): 1000-1004 [Google Scholar]
  17. H.G. Kristinsson, B.A. Rasco, Fish protein hydrolysates: Production, biochemical and functional properties. Critical Reviews in Food Science and Nutrition, 40 (2000): 43-81 [PubMed] [Google Scholar]
  18. X. Yuan, X. Gu, J. Tang, Optimization of the production of Momordica charantia L. Var. abbreviata Ser. protein hydrolysates with hypoglycemic effect using Alcalase, Food Chemistry, 111 (2008): 340-344 [PubMed] [Google Scholar]
  19. T. P. Singh, R. A. Siddiqi, D. S. Sogi, Statistical optimization of enzymatic hydrolysis of rice bran protein concentrate for enhanced hydrolysate production by papain, Lebensmittel-Wissenschaft & Technologie, 99 (2019): 77-83 [Google Scholar]
  20. D. Betancur-Ancona, R. Martinez-Rosado, A. Corona-Cruz, A. Castellanos-Ruelas, M.E. Jaramillo-Flores, L. Chel-Guerrero, Functional properties of hydrolysates from Phaseolus lunatus seeds, International Journal of Food Science and Technology, 44 (2009): 128-137 [Google Scholar]
  21. N. Bhaskar, T. Benila, C. Radha, R.G. Lalitha, Optimization of enzymatic hydrolysis of visceral waste proteins of Catla (Catla catla) for preparing protein hydrolysate using a commercial protease, Bioresource Technology, 99 (2008): 335-343 [PubMed] [Google Scholar]
  22. K. Zhang, B. Zhang, B. Chen, L. Jing, Z. Zhu, K. Kazemi, Modeling and optimization of Newfoundland shrimp waste hydrolysis for microbial growth using response surface methodology and artificial neural networks, Marine Pollution Bulletin, 109 (2016): 245-252 [PubMed] [Google Scholar]
  23. J. Adler-Nissan, Determination of the degree of hydrolysis of food proteins hydrolysates by Trinitrobenzenesulfonic acid, Journal of Agricultural and Food Chemistry, 27 (1979):1256-1262 [PubMed] [Google Scholar]
  24. N. Wisuthiphaet, S. Klinchan, S. Kongruang, Fish Protein Hydrolysate Production by Acid and Enzymatic Hydrolysis, Applied Science and Engineering Progress, 9 (2016): 261–270 [Google Scholar]
  25. M.A. Amiza, S. Nurul Ashikin, A.L. Faazaz, Optimization of enzymatic protein hydrolysis from silver catfish (Pangasius sp.) Frame, International Food Research Journal, 18 (2011): 775-781 [Google Scholar]
  26. A. Vannabun, S. Ketnawa, S. Phongthai, S. Benjakul, S. Rawdkuen, Characterization of acid and alkaline proteases from viscera of farmed giant catfish, Food Bioscience, 6 (2014): 9-16 [Google Scholar]
  27. H. Haslaniza, M.Y. Maskat, W.M. Wan Aida, S. Mamot, The effects of enzyme concentration, temperature and incubation time on nitrogen content and degree of hydrolysis of protein precipitate from cockle (Anadara granosa) meat wash water, International Food Research Journal, International Food Research Journal, 17 (2010): 147-152 [Google Scholar]
  28. V. Venugopal, Enzymes from seafood processing waste and their applications in seafood processing, in Advances in Food and Nutrition Research, S.-K. Kim and F. Toldrá, Academic Press, 78 (2016): 4769 [Google Scholar]
  29. FAO/WHO, Energy and protein requirements, Report of joint FAO/WHO/UNU Expert Consultation Technical Report. FAO/WHO and United Nations University, Geneva, 724 (1985): 116-129 [Google Scholar]
  30. NRC National Research Council, Nutrient Requirement of Fish, National Academy of Science Washington, (1993): 124. [Google Scholar]
  31. J.C. Swanepoel, N.J. Goosen, Evaluation of fish protein hydrolysates in juvenile African catfish (Clarias gariepinus) diets, Aquaculture, 496 (2018): 262–269 [Google Scholar]
  32. S. MacKenzie, Recent developments in amino acid analysis by gas-liquid chromatography, in Methods of biochemical analysis, D. Glick, Ed. John Wiley and Sons, 27 (2009): 1-88 [Google Scholar]
  33. S. Benjakul, M.T. Morrissey, Protein hydrolysates from pacific whiting solid wastes, Agricultural and Food Chemistry, 45 (1997): 3423-3430 [Google Scholar]
  34. S.F. See, L.L. Hoo, A.S. Babji, Optimization of enzymatic hydrolysis of Salmon (Salmo salar) skin by Alcalase, International Food research, 18 (2011): 1359-1365 [Google Scholar]
  35. H. Yin, J. Pu, Y. Wan, B. Xiang, P.J. Bechtel, S. Sathivel, Rheological and functional properties of Catfish skin protein hydrolysates, Journal of Food Science, 75, 1 (2010): E11-E17 [PubMed] [Google Scholar]
  36. S.A. Santos, V.G. Martins, M. Salas-Mellado, C. Prentice, Evaluation of functional properties in protein hydrolysates from Bluewing Searobin (Prionotus punctatus) obtained with different microbial enzymes, Food and Bioprocess Technology, 4 (2011): 1399–1406 [Google Scholar]
  37. L. You, M. Zhao, J. M. Regenstein, and J. Ren, In vitro antioxidant activity and in vivo anti-fatigue effect of loach (Misgurnus anguillicaudatus) peptides prepared by papain digestion, Food Chemistry, 124 (2011): 188-194 [Google Scholar]
  38. M. Watford, Glutamine and glutamate: Nonessential or essential amino acids?” Animal Nutrition, 1 (2015): 119-122 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.