Open Access
Issue |
E3S Web Conf.
Volume 303, 2021
The 10th Anniversary Russian-Chinese Symposium “Clean Coal Technologies: Mining, Processing, Safety, and Ecology” 2021
|
|
---|---|---|
Article Number | 01058 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.1051/e3sconf/202130301058 | |
Published online | 17 September 2021 |
- O’Malley, S., Kakadiaris, I, IEEE Conf. Computer Vision and Pattern Recognition (2004) [Google Scholar]
- Admasu, F., Back, S. Toennies, K. J. Geophysics 71:6, 49 (2006) [Google Scholar]
- Tingdahl, K., De Rooij, M., Geophysical Prospecting. J. 53:4, 533 (2005) [Google Scholar]
- Pedersen, S.I., Randen, T., Sonneland, L., Steen, O., Soc. Explorational Geophysicists 72nd Annu. Meeting (2005) [Google Scholar]
- Wu, J., Ruan, Q., The 18th International Conference on Pattern Recognition, 3, 718 (2006) [Google Scholar]
- Zhang, X., Ye, H., Zhang H., Multi-Channel Wavelet-Based Diffusion Method for Denoising DTI Images. BMEI, 178 (2018) [Google Scholar]
- Nasrollahi, K., Moeslund, T.B., Super-resolution: A comprehensive survey. Mach. Vis. Appl, 25:6, 1423 (2014) [Google Scholar]
- Mandal, S., Bhavsar, A., Sao, A. K. Noise adaptive super-resolution from single image via non-local mean and sparse representation. Signal Process, 132, 134 (2017) [Google Scholar]
- Liu, D., Wang, Z., Wen, B., Yang, J., Han, W., Huang, T.S., IEEE Trans. Image Process 25:7, 3194 (2016) [CrossRef] [PubMed] [Google Scholar]
- Batz, M., Eichenseer, A., Seiler, J., Jonscher, M., Kaup, A. IEEE Conf. Comput. Vis. Pattern Recog 58 (2015) [Google Scholar]
- Kim, K.I., Kwon, Y., IEEE Trans. Pattern Anal. Mach. Intell, 32:6, 1127 (2010) [CrossRef] [PubMed] [Google Scholar]
- Schulter, S., Leistner, C., Bischof, H., IEEE Conf. Comput. Vis. Pattern Recog, 3791 (2015) [Google Scholar]
- Ledig, C., Theis, L., Huszar, F., Caballero, J., Cunningham, A., Acosta, A., et al. Photo-realistic single image super-resolution using a generative adversarial network. Conf. Comput. Vis. Pattern Recog., 4681 (2020) [Google Scholar]
- Keys, R. G. Cubic convolution interpolation for digital image processing. IEEE Trans. Acoust. Speech Signal Processing 29:6, 1153 (1981) [Google Scholar]
- Zhou, F., Yang, W., Liao, Q. Interpolation-based image super-resolution using multisurface fitting. IEEE Trans. Image Process 21(7), 3312 (2020) [Google Scholar]
- Hung, K.-W., Siu, W.-C., IEEE Trans. Image Process, 21:3, 1061 (2012) [CrossRef] [PubMed] [Google Scholar]
- Ren, C., He, X., Teng, Q., Wu, Y., Nguyen, T.Q., IEEE Trans. Image Process, 25:5, 2168-2183 (2016) [Google Scholar]
- Zhu, J., Zhou, C., Fan, D., Zhou, J. A. Journal of Nanomaterials (2014) [Google Scholar]
- Freeman, W.T., Jones, T.R., Pasztor, E.C., Computer Graphics & Applications IEEE, 22:2, 56 (2002) [Google Scholar]
- Yang, J., Wright, J., Huang, T.S., Ma, Y., IEEE Trans. Image Process, 19:11, 2861 (2010) [Google Scholar]
- Yang, J., Wang, Z., Lin, Z., Cohen, S., Huang, T., IEEE Trans. Image Process, 21:11, 3467 (2012) [Google Scholar]
- Timofte, R., De Smet, V., Van Gool, L., Proc. Asian Conf. Comput, 111 (2014) [Google Scholar]
- Schulter, S., Leistner, C., Bischof, H., IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 3791 (2015) [Google Scholar]
- Dong, C., Loy, C.C., He, K., Tang, X., IEEE Trans. Pattern Anal. Mach. Intell, 38:2, 295 (2016) [Google Scholar]
- Dong, C., Loy, C.C., Tang, X., Proc. ECCV, 391 (2016) [Google Scholar]
- Shi, W., Caballero, J., Huszár, F., Totz, J., Aitken, A.P., Bishop, R., IEEE Conf. Comput. Vis. Pattern Recog, 1874 (2016) [Google Scholar]
- Ye, Y., Shan, J., Bruzzone, L., Shen, L., IEEE Trans. Geosci. Remote Sens, 55:5, 2941 (2017) [Google Scholar]
- Gong, C., Liu, T., Tao, D., Fu, K., Tu, E., Yang, J., IEEE Trans. Neural Netw. Learn. Syst, 26:10, 2261 (2015) [Google Scholar]
- Jia, Y. Caffe: Convolutional architecture for fast feature embedding. ACM Multimedia 2, 4 (2014) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.