Open Access
Issue
E3S Web Conf.
Volume 304, 2021
2nd International Conference on Energetics, Civil and Agricultural Engineering (ICECAE 2021)
Article Number 03019
Number of page(s) 6
Section Agricultural Engineering
DOI https://doi.org/10.1051/e3sconf/202130403019
Published online 21 September 2021
  1. J. Kacur, Nonlinear parabolic equations with the mixed nonlinear and nonstationary boundary conditions, Math Slovoca 30, 213–237 (1980) [Google Scholar]
  2. J. Kacur, Nonlinear parabolic boundary valve problems with the time derivative in the boundary conditions, Lect Notes Math 703, 170–178 (1979) [Google Scholar]
  3. L.N. Tao, Heat conduction with nonlinear boundary condition, Z. angew. Math. Phys. 32, 144–155 (1981). [Google Scholar]
  4. S.G. Mixlin, Numerical implementation of variational methods, Science, Moscow (1966) [Google Scholar]
  5. J. Douglas, Jr., T. Dupont, Galerkin methods for parabolic equations with nonlinear foundry conditions, NumerMalh. 20, 213–237 (1973) [Google Scholar]
  6. J. E. Dench, Jr., Galerking methods for some highly nonlinear problems, SIAM Numer Anal. 14, 327–434 (1977) [Google Scholar]
  7. L. Jutchell, A Galerken method for nonlinear parabolic equations with nonlinear boundary conchtions, SIAM J Numer Anal. 16, 254–299 (1979) [Google Scholar]
  8. I.M. Tikhinova, Application of the stationary galerkin method to the first boundary value problem for a mixed high-order equation, Mathematical notes of NEFU 23(4), 73–81 (2016). [Google Scholar]
  9. V.E. Fedorov, The stationary galerkin method applied to the first boundary value problem for a higher order equation with changing time direction, Mathematical Notes of NEFU 24 (4) 67–75 (2017). [Google Scholar]
  10. A.Z. Mamatov, Application of the Galerkin method to some quasilinear parabolic equation, Journal of LSU 13, 37–45 (1981) [Google Scholar]
  11. A.Z. Mamatov, G. Djumabaev, On a Problem of Parabolic Type with Divergent Principal Part, 53rd International Scientific and Practical Conference, VGTU, Vitebsk, Belarus (2020) [Google Scholar]
  12. A.Z. Mamatov, S. Baxramov, An approximate solution of the Galerkin method of a quasilinear equation with a boundary condition containing the time derivative of the required function, Uzbekistan-Malaysiya Joint Internatonal Scientific Conference, National University of Uzbekistan, Tashkent (2020). [Google Scholar]
  13. A.Z. Mamatov, M.S. Dosanov, J. Raxmanov, D.X. Turdibaev, One parabolic problem with divergent principal part, National Association of Scientists 57, 59–63 (2020) [Google Scholar]
  14. M.F. Wheeler, A priori error estimates for Galerkin approximation to parabolic partial differential equations, SIAM J. Numer. Anal. 10, 723–759 (1973) [Google Scholar]
  15. V.G. Pimenov, A.B. Lojnikov, Numerical Methods, Publishing House of Yekaterinburg, Uralsk University, Uralsk, Russia (2014) [Google Scholar]
  16. P.A. Denisov, V.F. Petrov, Numerical Methods: Study Guide, South-Russian State Polytechnic University named after M.I. Platova, Novocherkask (2017) [Google Scholar]
  17. O.A. Ladyjenskaya, V.A. Solonnikov, N.N. Uraltseva, Linear and quasilinear equations of parabolic type, Science, Moscow (1967) [Google Scholar]
  18. O.A. Ladyjenskaya, N.N. Uraltseva, Linear and quasilinear equations of elliptic type, Science, Moscow (1973) [Google Scholar]
  19. A.D. Polyanin, W.E. Schiesser, A.I. Zhurov, Partial differential equations, Scholarpedia 3(10), 4605 (2008) [Google Scholar]
  20. G. Burkhoff, M.H. Schultz, R.S. Varda, Piecewise Hermite interpolations in one and two variables with applications to partial differential equations, Numer Math 11, 232–256 (1968) [Google Scholar]
  21. J.H. Bramble, S.R. Hilbert, Bounds for a class of linear functionals with applications to Hermite interpolation, Numer Math 16, 362–369 (1971) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.