Open Access
Issue
E3S Web Conf.
Volume 307, 2021
International Interdisciplinary Scientific Conference “Digitalisation and Sustainability for Development Management: Economic, Social, and Ecological Aspects” 2021
Article Number 04001
Number of page(s) 11
Section Artificial Intelligence and Cognitive Technologies in Sustainable Development
DOI https://doi.org/10.1051/e3sconf/202130704001
Published online 22 September 2021
  1. L. Ingber, Revisiting our quantum world. In Hooke, A. (Ed.), Technological Breakthroughs and Future Business Opportunities in Education, Health, and Outer Space, IGI Global, Hershey, PA. 1–16 (2021) [Google Scholar]
  2. M. Benedetti, E. Lloyd, S. Sack, M. Fiorentini, Parameterized quantum circuits as machine learning models. Quantum Science and Technology, 4(4) (2019) [Google Scholar]
  3. S. Chakrabarti, R. Krishnakumar, G. Mazzola, N. Stamatopoulos, S. Woerner, W. Zeng, A threshold for quantum advantage in derivative pricing. Technical Report arXiv:2012.03819v2 [quant-ph], Goldman Sachs, New York, NY (2020) [Google Scholar]
  4. S. Aaronson, P. Christiano, Quantum money from hidden subspaces. Technical Report arXiv:1203.4740 [quant-ph], MIT, Cambridge, MA (2012) [Google Scholar]
  5. L. Accardi, A. Boukas, The quantum black-scholes equation. Technical Report arXiv:0706.1300 [q-fin.PR], U di Roma Torvergata, Rome (2007) [Google Scholar]
  6. B. Baaquie, C. Coriano, M. Srikant, Quantum mechanics, path integrals and option pricing: Reducing the complexity of finance. Technical Report arXiv:condmat/0208191 [cond-mat.soft], National U Singapore, Singapore (2002) [Google Scholar]
  7. K. Bartkiewicz, A. Cernoch, G. Chimczak, K. Lemr, A. Miranowicz, F. Nori, Experimental quantum forgery of quantum optical money. Technical Report arXiv:1604.04453v1 [quant-ph], Adam Mickiewicz University, Poznan, Poland (2016) [Google Scholar]
  8. J. Jogenfors, Quantum bitcoin: An anonymous and distributed currency secured by the no-cloning theorem of quantum mechanics. Technical Report arXiv:1604.01383 [quant-ph], Linkoping U, Linkoping, Sweden (2016) [Google Scholar]
  9. K. Meyer, Extending and simulating the quantum binomial options pricing model. Technical Report Thesis, U Manitoba, Winnipeg, Canada (2009) [Google Scholar]
  10. E. Piotrowski, M. Schroeder, A. Zambrzycka, Physica A 368(1), 176–182 (2005) [Google Scholar]
  11. M. Wehner, W. Wolfer, Physical Review A 27, 2663–2670 (1983) [Google Scholar]
  12. M. Wehner, W. Wolfer, Physical Review A 28, 3003–3011 (1983) [Google Scholar]
  13. L. Ingber, Computational algorithms derived from multiple scales of neocortical processing. In Pereira, A., Massad, E., Bobbitt, N. (Eds.), Pointing at Boundaries: Integrating Computation and Cognition on Biological Grounds, Springer, New York. 1–13 (2011) [Google Scholar]
  14. L. Ingber, Columnar EEG magnetic influences on molecular development of short-term memory. In Kalivas, G., Petralia, S. (Eds.), Short-Term Memory: New Research, Nova, Hauppauge, NY. 37–72 (2012) [Google Scholar]
  15. L. Ingber, Sci 1(7), 1–21 (2018) [Google Scholar]
  16. L. Ingber, International Journal of Innovative Research in Information Security 3(5), 1–15 (2016) [Google Scholar]
  17. L. Ingber, International Journal of Innovative Research in Information Security 4(2), 14–22 (2017) [Google Scholar]
  18. L. Ingber, International Journal of Innovative Research in Information Security 4(2), 7–13 (2017) [Google Scholar]
  19. L. Ingber, The Open Cybernetics Systemics Journal 11, 119–133 (2017) [Google Scholar]
  20. L. Ingber, Forecasting COVID-19 with importance-sampling and path-integrals. WSEAS Transactions on Biology and Biomedicine (to be published) [Google Scholar]
  21. L. Ingber, H. Fujio, M. Wehner, Mathematical Computer Modelling 15(1), 65–90 (1991) [Google Scholar]
  22. L. Ingber, Physica A 283(3-4), 529–558 (2000) [Google Scholar]
  23. L. Ingber, P. Nunez, Physical Review E 51(5), 5074–5083 (1995) [Google Scholar]
  24. L. Ingber, R. Srinivasan, P. Nunez, Mathematical Computer Modelling 23(3), 43–53 (1996) [Google Scholar]
  25. L. Ingber, J. Wilson, Mathematical Computer Modelling 31(8/9), 167–192 (2000) [Google Scholar]
  26. L. Ingber, C. Chen, R. Mondescu, D. Muzzall, M. Renedo, Probability tree algorithm for general diffusion processes. Physical Review E 64(5), 056702–056707 (2001) [Google Scholar]
  27. L. Ingber, Mathematical Computer Modelling 12(8), 967–973 (1989) [CrossRef] [Google Scholar]
  28. L. Ingber, Adaptive simulated annealing (ASA). Technical Report Global optimization C-code, Caltech Alumni Association, Pasadena, CA (1993) [Google Scholar]
  29. L. Ingber, Adaptive simulated annealing. In Oliveira, H., Petraglia, A., Ingber, L., Machado, M., Petraglia, M. (Eds.), Stochastic global optimization and its applications with fuzzy adaptive simulated annealing, Springer, New York. 33–61 (2012) [Google Scholar]
  30. L. Ingber, Hybrid classical-quantum computing: Applications to statistical mechanics of neocortical interactions. Technical Report Report 2021:HCQFA, Physical Studies Institute, Ashland, OR (2021) [Google Scholar]
  31. L. Ingber, Physica D 5, 83–107 (1982) [Google Scholar]
  32. L. Ingber, Physical Review A 28, 395–416 (1983) [Google Scholar]
  33. F. Langouche, D. Roekaerts, E. Tirapegui, Functional Integration and Semiclassical Expansions. Reidel, Dordrecht, The Netherlands (1982) [Google Scholar]
  34. L. Schulman, Techniques and Applications of Path Integration. J. Wiley & Sons, New York (1981) [Google Scholar]
  35. L. Ingber, In Amari, S.I., Xu, L., King, I., Leung, K.S. (Eds.), Progress in Neural Information Processing, Springer, New York. 777–784 (1996) [Google Scholar]
  36. L. Ingber, Physical Review E 55(4), 4578–4593 (1997) [Google Scholar]
  37. L. Ingber, Mathematical Computer Modelling 27(3), 33–64 (1998) [Google Scholar]
  38. M. Bowman, L. Ingber, Canonical momenta of nonlinear combat. In Proceedings of the 1997 Simulation Multi-Conference, 6-10 April 1997, Atlanta, GA, Society for Computer Simulation, San Diego, CA, 1–6 (1997) [Google Scholar]
  39. L. Ingber, R. Mondescu, IEEE Transactions Neural Networks 12(4), 776–790 (2001) [Google Scholar]
  40. L. Ingber, Physical Review A 42(12), 7057–7064 (1990) [Google Scholar]
  41. M. Wehner, W. Wolfer, W. Physical Review A 35, 1795–1801 (1987) [Google Scholar]
  42. L. Ingber, J. Wilson, Mathematical Computer Modelling 29(5), 39–57 (1999) [Google Scholar]
  43. M. O’Callaghan, B. Miller, Physical Review E 89(042124), 1–19 (2014) [Google Scholar]
  44. J. Hull, Options, Futures, and Other Derivatives, Third Edition. Prentice Hall, Upper Saddle River, NJ (1997) [Google Scholar]
  45. F. Fabozzi, Treasury Securities and Derivatives. Fabozzi Associates, New Hope, PA (1998) [Google Scholar]
  46. L. Ingber, Physical Review E 49(5B), 4652–4664 (1994) [Google Scholar]
  47. F. Fabozzi, Treasury Securities and Derivatives. Fabozzi Associates, New Hope, PA (1998) [Google Scholar]
  48. J. Preskill, Quantum mechanics. Technical Report Lecture Notes, Caltech, Pasadena, CA (2015) [Google Scholar]
  49. S. Wiesner, SIGACT News 15(1), 78–88 (1983) [Google Scholar]
  50. L. Ingber, Virtual Economics 3(2), 7–24 (2020) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.