Open Access
Issue
E3S Web Conf.
Volume 308, 2021
2021 6th International Conference on Materials Science, Energy Technology and Environmental Engineering (MSETEE 2021)
Article Number 02008
Number of page(s) 10
Section Environmental Ecology and Biochemical Testing
DOI https://doi.org/10.1051/e3sconf/202130802008
Published online 27 September 2021
  1. Abi-Akl, R., Ledieu, E., Enke, T. N., Cordero, O. X., Cohen, T., Physics-based prediction of biopolymer degradation. Soft Matter 2019, 15 (20), 4098-4108. [CrossRef] [PubMed] [Google Scholar]
  2. Arjmandi, M., Ramezani, M., Mechanical and tribological assessment of silica nanoparticle-alginate-polyacrylamide nanocomposite hydrogels as a cartilage replacement. J. Mech. Behav. Biomed. Mater. 2019, 95, 196-204. [CrossRef] [PubMed] [Google Scholar]
  3. Luckachan, G. E., Pillai, C. K. S., Biodegradable Polymers- A Review on Recent Trends and Emerging Perspectives. J. Polym. Environ. 2011, 19 (3), 637-676. [Google Scholar]
  4. Vink, E., Davies, S., Life Cycle Inventory and Impact Assessment Data for 2014 Ingeo Polylactide Production. [Google Scholar]
  5. Pan, P.; Inoue, Y., Polymorphism and isomorphism in biodegradable polyesters. Prog. Polym. Sci. 2009, 34 (7), 605-640. [Google Scholar]
  6. Sangeetha, V. H., Deka, H., Varghese, T. O., Nayak, S. K., State of the art and future prospectives of poly(lactic acid) based blends and composites. Polym. Compos. 2018, 39 (1), 81–101. [Google Scholar]
  7. Vink, E. T. H., Rabago, K. R., Glassner, D. A.; Gruber, P. R., Applications of life cycle assessment to NatureWorks (TM) polylactide (PLA) production. Polymer Degradation and Stability 2003, 80 (3), 403–419. [Google Scholar]
  8. Lim, L. T., Auras, R.; Rubino, M., Processing technologies for poly(lactic acid). Prog. Polym. Sci. 2008, 33 (8), 820–852. [Google Scholar]
  9. Li, H. B.; Huneault, M. A., Effect of nucleation and plasticization on the crystallization of poly(lactic acid). Polymer 2007, 48 (23), 6855–6866. [Google Scholar]
  10. Slomkowski, S., Penczek, S., Duda, A., Polylactides-an overview. Polym. Adv. Technol. 2014, 25 (5), 436–447. [Google Scholar]
  11. Kohn, F. E., Vanommen, J. G.; Feijen, J., The Mechanism of the Ring-Opening Polymerization of Lactide and Glycolide. Eur. Polym. J. 1983, 19 (12), 1081–1088. [Google Scholar]
  12. Kricheldorf, H. R.; Boettcher, C., Polylactones .26. Lithium Alkoxide-Initiated Polymerizations of L-Lactide. Makromolekulare Chemie-Macromolecular Chemistry and Physics 1993, 194 (6), 1665–1669. [Google Scholar]
  13. Kohn, F. E., Vandenberg, J. W. A., Vanderidder, G.; Feijen, J., The Ring-Opening Polymerization of D,L-Lactide in the Melt Initiated with Tetraphenyltin. J. Appl. Polym. Sci. 1984, 29 (12), 4265–4277. [Google Scholar]
  14. Kricheldorf, H. R., Syntheses and application of polylactides. Chemosphere 2001, 43 (1), 49–54. [CrossRef] [PubMed] [Google Scholar]
  15. Auras, R. A., Harte, B., Selke, S.; Hernandez, R., Mechanical, physical, and barrier properties of poly(lactide) films. J. Plast. Film Sheeting 2003, 19 (2), 123–135. [Google Scholar]
  16. Huang, T., Yamaguchi, M., Effect of cooling conditions on the mechanical properties of crystalline poly (lactic acid). J. Appl. Polym. Sci. 2017, 134 (24), 7. [Google Scholar]
  17. Saeidlou, S., Huneault, M. A., Li, H.; Park, C. B., Poly(lactic acid) crystallization. Prog. Polym. Sci. 2012, 37 (12), 1657–1677. [Google Scholar]
  18. Lopes, M. S., Jardini, A. L., Maciel, R., Poly (lactic acid) production for tissue engineering applications. In Chisa 2012, Kluson, P., Ed. Elsevier Science Bv: Amsterdam, 2012; Vol. 42, pp 1402–1413. [Google Scholar]
  19. Chen, X., Kalish, J., Hsu, S. L., Structure evolution of alpha’-phase poly(lactic acid). Journal of Polymer Science Part B Polymer Physics 2011. [Google Scholar]
  20. Di Lorenzo, M. L., Crystallization behavior of poly(L-lactic acid). Eur. Polym. J. 2005, 41 (3), 569–575. [Google Scholar]
  21. Elsawy, M. A., Kim, K. H., Park, J. W.; Deep, A., Hydrolytic degradation of polylactic acid (PLA) and its composites. Renew. Sust. Energ. Rev. 2017, 79, 1346–1352. [Google Scholar]
  22. Kale, G., Auras, R.; Singh, S. P., Comparison of the degradability of poly(lactide) packages in composting and ambient exposure conditions. Packag. Technol. Sci. 2007, 20 (1), 49–70. [Google Scholar]
  23. Lucas, N., Bienaime, C., Belloy, C., Queneudec, M., Silvestre, F.; Nava-Saucedo, J. E., Polymer biodegradation: Mechanisms and estimation techniques. Chemosphere 2008, 73 (4), 429–442. [CrossRef] [PubMed] [Google Scholar]
  24. Auras, R., Harte, B.; Selke, S., An overview of polylactides as packaging materials. Macromol. Biosci. 2004, 4 (9), 835–864. [CrossRef] [PubMed] [Google Scholar]
  25. Qi, X., Ren, Y. W., Wang, X. Z., New advances in the biodegradation of Poly(lactic) acid. Int. Biodeterior. Biodegrad. 2017, 117, 215–223. [Google Scholar]
  26. Lim, L. T., Auras, R.; Rubino, M., Processing technologies for poly(lactic acid). Prog. Polym. Sci. 2008, 33 (8), 820–852. [Google Scholar]
  27. Fernández, J., Montero, M., Etxeberria, A., Sarasua, J.-R., Ethylene brassylate: Searching for new comonomers that enhance the ductility and biodegradability of polylactides. Polymer Degradation and Stability 2017, 137, 23–34. [Google Scholar]
  28. Bedő, D., Imre, B., Domján, A., Schön, P., Vancso, G. J., Pukánszky, B., Coupling of poly(lactic acid) with a polyurethane elastomer by reactive processing. Eur. Polym. J. 2017, 97, 409–417. [Google Scholar]
  29. Ghalia, M. A., Dahman, Y., Investigating the effect of multi-functional chain extenders on PLA/PEG copolymer properties. Int. J. Biol. Macromol. 2017, 95, 494–504. [CrossRef] [PubMed] [Google Scholar]
  30. Zhang, B., Sun, B., Bian, X. C., Li, G.; Chen, X. S., High Melt Strength and High Toughness PLLA/PBS Blends by Copolymerization and in Situ Reactive Compatibilization. Ind. Eng. Chem. Res. 2017, 56 (1), 52–62. [Google Scholar]
  31. Kaynak, C., Meyva, Y., Use of maleic anhydride compatibilization to improve toughness and other properties of polylactide blended with thermoplastic elastomers. Polym. Adv. Technol. 2014, 25 (12), 1622–1632. [Google Scholar]
  32. Liu, R., Dai, L., Hu, L. Q., Zhou, W. Q., Si, C. L., Fabrication of high-performance poly(L-lactic acid)/lignin-graft-poly(D-lactic acid) stereocomplex films. Mater. Sci. Eng. C-Mater. Biol. Appl. 2017, 80, 397–403. [Google Scholar]
  33. Park, S. Y., Kim, J. Y., Youn, H. J.; Choi, J. W., Utilization of lignin fractions in UV resistant lignin-PLA biocomposites via lignin-lactide grafting. Int. J. Biol. Macromol. 2019, 138, 1029–1034. [CrossRef] [PubMed] [Google Scholar]
  34. Yoon, J. T., Lee, S. C., Jeong, Y. G., Effects of grafted chain length on mechanical and electrical properties of nanocomposites containing polylactide-grafted carbon nanotubes. Compos. Sci. Technol. 2010, 70 (5), 776–782. [Google Scholar]
  35. Lyu, Y., Chen, Y. L., Lin, Z. W., Zhang, J. M., Shi, X. Y., Manipulating phase structure of biodegradable PLA/PBAT system: Effects on dynamic rheological responses and 3D printing. Compos. Sci. Technol. 2020, 200, 15. [Google Scholar]
  36. Deng, L., Xu, C., Wang, X. H., Wang, Z. G., Supertoughened Polylactide Binary Blend with High Heat Deflection Temperature Achieved by Thermal Annealing above the Glass Transition Temperature. ACS Sustain. Chem. Eng. 2018, 6 (1), 480–490. [Google Scholar]
  37. Wu, B. G., Xu, P. W., Yang, W. J., Hoch, M., Dong, W. F., Chen, M. Q., Bai, H. Y.; Ma, P. M., Super-Toughened Heat-Resistant Poly(lactic acid) Alloys By Tailoring the Phase Morphology and the Crystallization Behaviors. J. Polym. Sci. 2020, 58 (3), 500–509. [Google Scholar]
  38. Wu, B. G., Zeng, Q. T., Niu, D. Y., Yang, W. J., Dong, W. F., Chen, M. Q., Ma, P. M., Design of Supertoughened and Heat-Resistant PLLA/Elastomer Blends by Controlling the Distribution of Stereocomplex Crystallites and the Morphology. Macromolecules 2019, 52 (3), 1092–1103. [Google Scholar]
  39. Deng, S. H., Bai, H. W., Liu, Z. W., Zhang, Q.; Fu, Q., Toward Supertough and Heat-Resistant Stereocomplex-Type Polylactide/Elastomer Blends with Impressive Melt Stability via in Situ Formation of Graft Copolymer during One-Pot Reactive Melt Blending. Macromolecules 2019, 52 (4), 1718–1730. [Google Scholar]
  40. Niu, X. F., Liu, Z. N., Hu, J., Rambhia, K. J., Fan, Y. B.; Ma, P. X., Microspheres Assembled from Chitosan-Graft-Poly(lactic acid) Micelle-Like Core-Shell Nanospheres for Distinctly Controlled Release of Hydrophobic and Hydrophilic Biomolecules. Macromol. Biosci. 2016, 16 (7), 1039–1047. [CrossRef] [PubMed] [Google Scholar]
  41. Zhang, X. J., Dai, Y., A Functionalized Cyclic Lactide Monomer for Synthesis of Water-Soluble Poly(Lactic Acid) and Amphiphilic Diblock Poly(Lactic Acid). Macromol. Rapid Commun. 2017, 38 (2), 5. [Google Scholar]
  42. Kalelkar, P. P., Collard, D. M., Tricomponent Amphiphilic Poly(oligo(ethylene glycol) methacrylate) Brush-Grafted Poly(lactic acid): Synthesis, Nanoparticle Formation, and In Vitro Uptake and Release of Hydrophobic Dyes. Macromolecules 2020, 53 (11), 4274–4283. [Google Scholar]
  43. Qi, L. Y., Zhu, Q. J., Cao, D., Liu, T. T., Zhu, K. R., Chang, K. X., Gao, Q. W., Preparation and Properties of Stereocomplex of Poly(lactic acid) and Its Amphiphilic Copolymers Containing Glucose Groups. Polymers 2020, 12 (4), 17. [Google Scholar]
  44. C. Oerlemans., W. Bult., M. Bos., G. Storm., F.W. Nijsen., W.E. Hennink., Polymeric milcelles in anticancer therapy: targeting, imaging and triggered release, Pharm. Res. 2010, 27 (12), 2569–2589. [Google Scholar]
  45. G. Strohbehn., D. Coman., L. Han., R.R. Ragheb., T.M. Fahmy., A.J. Huttner., F. Hyder., J.M. Piepmeier., W.M. Saltzman., J. Zhou., Imaging the delivery of brain-penetrating PLGA nanoparticles in the brain using magnetic resonance, J. Neuro-Oncol. 2015, 121 (3), 441–449. [Google Scholar]
  46. E. Fröhlich., E. Roblegg., Mucus as barrier for drug delivery by nanoparticles, J. Nanosci. Nanotechnol. 2014, 14 (1), 126–136. [CrossRef] [PubMed] [Google Scholar]
  47. J.J. Lochhead., R.G. ThornE., Intranasal delivery of biologics to the central nervous system, Adv. Drug Deliv. Rev. 2012, 64 (7), 614–628. [CrossRef] [PubMed] [Google Scholar]
  48. J. Cai., X. Peng., K.D. Nelson., R. Eberhart., G.M. Smith., Permeable guidance channels containing microfilament scaffolds enhance axon growth and maturation, J. Biomed. Mater. Res. A. 2005, 75 (2), 374–386. [CrossRef] [PubMed] [Google Scholar]
  49. F.A. Barber., D.A. Coons., Midterm results of meniscal repair using the Bio Stinger meniscal repair device, Arthroscopy 2006, 22 (4), 400–405. [Google Scholar]
  50. J.H. Chang., H.C. Shen., G.S. Huang., R.Y. Pan., C.F. Wu., C.H. Lee., Q. Chen., A biomechanical comparison of all-inside meniscus repair techniques, J. Surg. Res. 2009, 155 (1), 82–88. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.