Open Access
Issue
E3S Web Conf.
Volume 309, 2021
3rd International Conference on Design and Manufacturing Aspects for Sustainable Energy (ICMED-ICMPC 2021)
Article Number 01032
Number of page(s) 12
DOI https://doi.org/10.1051/e3sconf/202130901032
Published online 07 October 2021
  1. H.-T. Pao, C.-M. Tsai, H.-T. Pao, and C.-M. Tsai, Energy Policy 38, 7850 (2010) [CrossRef] [Google Scholar]
  2. S. J. Davis and K. Caldeira, Proc. Natl. Acad. Sci. 107, 5687 (2010) [CrossRef] [Google Scholar]
  3. D. Dodman, Environ. Urban. 21, 185 (2009) [CrossRef] [Google Scholar]
  4. J. Byrne, K. Hughes, W. Rickerson, and L. Kurdgelashvili, Energy Policy 35, 4555 (2007) [CrossRef] [Google Scholar]
  5. S. Solomon, G.-K. Plattner, R. Knutti, and P. Friedlingstein, Proc. Natl. Acad. Sci. 106, 1704 (2009) [CrossRef] [Google Scholar]
  6. di P. R. None, H. B, and G.-V. MA, Nature 406, 173 (2000) [CrossRef] [PubMed] [Google Scholar]
  7. E. Barbier, Renew. Sustain. Energy Rev. 6, 3 (2002) [CrossRef] [Google Scholar]
  8. İ. Dinçer and C. Zamfirescu, Sustain. Energy Syst. Appl. 1 (2011) [Google Scholar]
  9. B. Parida, S. Iniyan, R. Goic, B. Parida, S. Iniyan, and R. Goic, Renew. Sustain. Energy Rev. 15, 1625 (2011) [CrossRef] [Google Scholar]
  10. W. T. Xie, Y. J. Dai, R. Z. Wang, K. Sumathy, W. T. Xie, Y. J. Dai, R. Z. Wang, and K. Sumathy, Renew. Sustain. Energy Rev. 15, 2588 (2011) [CrossRef] [Google Scholar]
  11. C. Zamfirescu, I. Dincer, G. F. Naterer, and R. Banica, Chem. Eng. Sci. 97, 235 (2013) [CrossRef] [Google Scholar]
  12. J. A. Turner, Science (80-.). 305, 972 (2004) [CrossRef] [PubMed] [Google Scholar]
  13. E. P. Melián, O. G. Díaz, A. O. Méndez, C. R. López, M. N. Suárez, J. M. D. Rodríguez, J. A. Navío, D. F. Hevia, and J. P. Peña, Int. J. Hydrogen Energy 38, 2144 (2013) [CrossRef] [Google Scholar]
  14. J. Zhu and M. Zäch, Curr. Opin. Colloid Interface Sci. 14, 260 (2009) [CrossRef] [Google Scholar]
  15. R. Abe, J. Photochem. Photobiol. C Photochem. Rev. 11, 179 (2010) [CrossRef] [Google Scholar]
  16. N. Shi, X. Li, T. Fan, H. Zhou, D. Zhang, and H. Zhu, Int. J. Hydrogen Energy 39, 5617 (2014) [CrossRef] [Google Scholar]
  17. L. Clarizia, D. Russo, I. Di Somma, R. Andreozzi, and R. Marotta, Energies 2017, Vol. 10, Page 1624 10, 1624 (2017) [Google Scholar]
  18. M. Tahir and N. S. Amin, Energy Convers. Manag. 76, 194 (2013) [CrossRef] [Google Scholar]
  19. C. Acar, I. Dincer, and C. Zamfirescu, Int. J. Energy Res. 38, 1903 (2014) [CrossRef] [Google Scholar]
  20. L. Bi, D. Xu, L. Zhang, Y. Lin, D. Wang, and T. Xie, Phys. Chem. Chem. Phys. 17, 29899 (2015) [CrossRef] [PubMed] [Google Scholar]
  21. G. Renger, Biochim. Biophys. Acta -Bioenerg. 1817, 1164 (2012) [CrossRef] [PubMed] [Google Scholar]
  22. K. Maeda, J. Photochem. Photobiol. C Photochem. Rev. 12, 237 (2011) [CrossRef] [Google Scholar]
  23. G. Renger, J. Photochem. Photobiol. B Biol. 104, 35 (2011) [CrossRef] [Google Scholar]
  24. B. Ohtani, J. Photochem. Photobiol. C Photochem. Rev. 11, 157 (2010) [CrossRef] [Google Scholar]
  25. S. A. Ansari and M. H. Cho, Sci. Reports 2016 61 6, 1 (2016) [Google Scholar]
  26. P. W. Chen, K. Li, Y. X. Yu, and W. De Zhang, Appl. Surf. Sci. 392, 608 (2017) [CrossRef] [Google Scholar]
  27. S. C. Yan, S. B. Lv, Z. S. Li, and Z. G. Zou, Dalt. Trans. 39, 1488 (2010) [CrossRef] [Google Scholar]
  28. W. J. Chun, A. Ishikawa, H. Fujisawa, T. Takata, J. N. Kondo, M. Hara, M. Kawai, Y. Matsumoto, and K. Domen, J. Phys. Chem. B 107, 1798 (2003) [CrossRef] [Google Scholar]
  29. †,‡ Mingce Long, † and Weimin Cai, and ‡ Horst Kisch*, J. Phys. Chem. C 112, 548 (2007) [CrossRef] [Google Scholar]
  30. Y. Z, Y. J, K. N, K. T, O. S, S.-W. H, Y. H, C. J, L. W, L. Z, L. Y, and W. RL, Nat. Mater. 9, 559 (2010) [CrossRef] [PubMed] [Google Scholar]
  31. X. Wang, S. Blechert, and M. Antonietti, ACS Catal. 2, 1596 (2012) [CrossRef] [Google Scholar]
  32. M. Z. Rahman, M. G. Kibria, and C. B. Mullins, Chem. Soc. Rev. 49, 1887 (2020) [CrossRef] [PubMed] [Google Scholar]
  33. G. Colón, Appl. Catal. A Gen. 518, 48 (2016) [CrossRef] [Google Scholar]
  34. A. FUJISHIMA and K. HONDA, Nat. 1972 2385358 238, 37 (1972) [CrossRef] [PubMed] [Google Scholar]
  35. M. Bernareggi, M. V. Dozzi, L. G. Bettini, A. M. Ferretti, G. L. Chiarello, and E. Selli, Catal. 2017, Vol. 7, Page 301 7, 301 (2017) [CrossRef] [Google Scholar]
  36. R. Mu, Z. Zhao, Z. Dohnálek, and J. Gong, Chem. Soc. Rev. 46, 1785 (2017) [CrossRef] [PubMed] [Google Scholar]
  37. P. Zhang, T. Wang, and J. Gong, Chem 4, 223 (2018) [CrossRef] [Google Scholar]
  38. D. Zhang, X. Ma, H. Zhang, Y. Liao, and Q. Xiang, Mater. Today Energy 10, 132 (2018) [CrossRef] [Google Scholar]
  39. Z. Luo, C. Li, S. Liu, T. Wang, and J. Gong, Chem. Sci. 8, 91 (2016) [CrossRef] [PubMed] [Google Scholar]
  40. C. Wang, Q. Hu, J. Huang, L. Wu, Z. Deng, Z. Liu, Y. Liu, and Y. Cao, Appl. Surf. Sci. 283, 188 (2013) [CrossRef] [Google Scholar]
  41. D. Sudha and P. Sivakumar, Chem. Eng. Process. Process Intensif. 97, 112 (2015) [CrossRef] [Google Scholar]
  42. N. Serpone and A. V. Emeline, J. Phys. Chem. Lett. 3, 673 (2012) [CrossRef] [PubMed] [Google Scholar]
  43. M. Y. Xie, K. Y. Su, X. Y. Peng, R. J. Wu, M. Chavali, and W. C. Chang, J. Taiwan Inst. Chem. Eng. 70, 161 (2017) [CrossRef] [Google Scholar]
  44. S. Cao, J. Low, J. Yu, and M. Jaroniec, Adv. Mater. 27, 2150 (2015) [CrossRef] [PubMed] [Google Scholar]
  45. J. Liu, T. Zhang, Z. Wang, G. Dawson, and W. Chen, J. Mater. Chem. 21, 14398 (2011) [CrossRef] [Google Scholar]
  46. X. Pang, H. Bian, W. Wang, C. Liu, M. S. Khan, Q. Wang, J. Qi, Q. Wei, and B. Du, Biosens. Bioelectron. 91, 456 (2017) [CrossRef] [PubMed] [Google Scholar]
  47. S. Patnaik, S. Martha, and K. M. Parida, RSC Adv. 6, 46929 (2016) [CrossRef] [Google Scholar]
  48. B. Zhu, P. Xia, Y. Li, W. Ho, and J. Yu, Appl. Surf. Sci. 391, 175 (2017) [Google Scholar]
  49. Z.J, W.Y, J.J, Z.J, L.Z,H.F, and Y. J, ACS Appl. Mater. Interfaces 5, 10317 (2013) [CrossRef] [PubMed] [Google Scholar]
  50. J. Sun, J. Zhang, M. Zhang, M. Antonietti, X. Fu, and X. Wang, Nat. Commun. 2012 31 3, 1 (2012) [Google Scholar]
  51. P. Niu, L. Zhang, G. Liu, and H.-M. Cheng, Adv. Funct. Mater. 22, 4763 (2012) [Google Scholar]
  52. Y. S, G. Y, Z. J, Z. L, M. L, F. Z, V. R, W. X, and A. PM, Adv. Mater. 25, 2452 (2013) [CrossRef] [PubMed] [Google Scholar]
  53. Y. Wu, G. Lu, and S. Li, Catal. Lett. 2009 1331 133, 97 (2009) [Google Scholar]
  54. L. Zhang, D. Liu, J. Guan, X. Chen, X. Guo, F. Zhao, T. Hou, and X. Mu, Mater. Res. Bull. 59, 84 (2014) [Google Scholar]
  55. M. Chen, Y. Liu, C. Li, A. Li, X. Chang, W. Liu, Y. Sun, T. Wang, and J. Gong, Energy Environ. Sci. 11, 2025 (2018) [Google Scholar]
  56. O. WJ, T. LL, N. YH, Y. ST, and C. SP, Chem. Rev. 116, 7159 (2016) [CrossRef] [PubMed] [Google Scholar]
  57. X. Chang, T. Wang, P. Zhang, J. Zhang, A. Li, and J. Gong, J. Am. Chem. Soc. 137, 8356 (2015) [CrossRef] [PubMed] [Google Scholar]
  58. P. Zhang, T. Wang, X. Chang, L. Zhang, and J. Gong, Angew. Chemie 128, 5945 (2016) [Google Scholar]
  59. L. Yin, Y.-P. Yuan, S.-W. Cao, Z. Zhang, and C. Xue, RSC Adv. 4, 6127 (2014) [Google Scholar]
  60. Y. Zhou, L. Zhang, W. Huang, Q. Kong, X. Fan, M. Wang, and J. Shi, Carbon N. Y. 99, 111 (2016) [Google Scholar]
  61. C. X, S. S, G. L, and M. SS, Chem. Rev. 110, 6503 (2010) [CrossRef] [PubMed] [Google Scholar]
  62. X. Chen, C. Li, M. Grätzel, R. Kostecki, and S. S. Mao, Chem. Soc. Rev. 41, 7909 (2012) [CrossRef] [PubMed] [Google Scholar]
  63. J. Fu, S. Cao, and J. Yu, J. Mater. 1, 124 (2015) [Google Scholar]
  64. X. Xing, M. Zhang, L. Hou, L. Xiao, Q. Li, and J. Yang, Int. J. Hydrogen Energy 42, 28434 (2017) [Google Scholar]
  65. O. Rosseler, M. V. Shankar, M. K. Le Du, L. Schmidlin, N. Keller, and V. Keller, J. Catal. 269, 179 (2010) [Google Scholar]
  66. G. Yu, H. Zhao, C. Xing, L. Guo, and X. Li, Catal. Sci. Technol. 11, 5349 (2021) [Google Scholar]
  67. P. Shan, C. Zhang, M. Zhou, C. He, T. Ouyang, J. Li, C. Tang, and J. Zhong, J. Mater. Chem. C 9, 7734 (2021) [Google Scholar]
  68. A. J. Bard, J. Photochem. 10, 59 (1979) [Google Scholar]
  69. C. S, Q.Y, H. T, D. Q, A. T, L. Z, M. SS, Z. F, D. K, and L. C, Angew. Chem. Int. Ed. Engl. 54, 8498 (2015) [CrossRef] [PubMed] [Google Scholar]
  70. N. Shehzad, M. Tahir, K. Johari, T. Murugesan, and M. Hussain, Appl. Surf. Sci. 463, 445 (2019) [Google Scholar]
  71. I. K, I. A, N. YH, A. R, and K. A, J. Am. Chem. Soc. 137, 604 (2015) [CrossRef] [PubMed] [Google Scholar]
  72. Y. Li, B. Wang, S. Liu, X. Duan, and Z. Hu, Appl. Surf. Sci. 324, 736 (2015) [Google Scholar]
  73. H.-L. Guo, H. Du, Y.-F. Jiang, N. Jiang, C.-C. Shen, X. Zhou, Y.-N. Liu, and A.-W. Xu, J. Phys. Chem. C 121, 107 (2016) [Google Scholar]
  74. X. Wang, G. Liu, Z.-G. Chen, F. Li, L. Wang, G. Q. Lu, and H.-M. Cheng, Chem. Commun. 3452 (2009) [Google Scholar]
  75. A. Bin Yousaf, M. Imran, S. J. Zaidi, and P. Kasak, Sci. Reports 2017 71 7, 1 (2017) [Google Scholar]
  76. P. Yang, Z.-J. Zhao, X. Chang, R. Mu, S. Zha, G. Zhang, and J. Gong, Angew. Chemie Int. Ed. 57, 7724 (2018) [Google Scholar]
  77. P. Deák, J. Kullgren, B. Aradi, T. Frauenheim, and L. Kavan, Electrochim. Acta 199, 27 (2016) [Google Scholar]
  78. W. T and G. J, Angew. Chem. Int. Ed. Engl. 54, 10718 (2015) [CrossRef] [PubMed] [Google Scholar]
  79. F. Zuo, L. Wang, and P. Feng, Int. J. Hydrogen Energy 39, 711 (2014) [Google Scholar]
  80. A. Bafaqeer, M. Tahir, and N. A. S. Amin, Appl. Catal. B Environ. 242, 312 (2019) [Google Scholar]
  81. A. M. Al-Hamdi, U. Rinner, and M. Sillanpää, Process Saf. Environ. Prot. 107, 190 (2017) [Google Scholar]
  82. A. V. Puga, Coord. Chem. Rev. 315, 1 (2016) [Google Scholar]
  83. E. Baniasadi, I. Dincer, and G. F. Naterer, Int. J. Hydrogen Energy 38, 9158 (2013) [Google Scholar]
  84. H. M. G. Tambago and R. L. de Leon, Int. J. Chem. Eng. Appl. 6, 220 (2015) [Google Scholar]
  85. R. Brahimi, Y. Bessekhouad, A. Bouguelia, and M. Trari, J. Photochem. Photobiol. A Chem. 186, 242 (2007) [Google Scholar]
  86. J. Lu, Y. Wang, J. Huang, J. Fei, L. Cao, and C. Li, Dye. Pigment. 144, 203 (2017) [Google Scholar]
  87. A. K. R. Police, S. Basavaraju, D. K. Valluri, S. Muthukonda V., S. Machiraju, and J. S. Lee, Chem. Eng. J. 247, 152 (2014) [Google Scholar]
  88. M. Bouchy and O. Zahraa, Int. J. Photoenergy 5, 191 (2003) [Google Scholar]
  89. K. C. Christoforidis and P. Fornasiero, ChemCatChem 9, 1523 (2017) [Google Scholar]
  90. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965) [Google Scholar]
  91. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964) [Google Scholar]
  92. L. Hedin and S. Lundqvist, Solid State Phys. -Adv. Res. Appl. 23, 1 (1970) [Google Scholar]
  93. W. G. Aulbur, L. Jönsson, and J. W. Wilkins, Solid State Phys. - Adv. Res. Appl. 54, 1 (2000) [Google Scholar]
  94. A. D. Becke and E. R. Johnson, J. Chem. Phys. 124, 221101 (2006) [CrossRef] [PubMed] [Google Scholar]
  95. F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009) [CrossRef] [PubMed] [Google Scholar]
  96. K. T. Butler, Y. Kumagai, F. Oba, and A. Walsh, J. Mater. Chem. C 4, 1149 (2016) [Google Scholar]
  97. Yabi Wu, Predrag Lazic, Geoffroy Hautier, Kristin Persson, and Gerbrand Ceder, Energy Environ. Sci. 6, 157 (2012) [Google Scholar]
  98. P. Miró, M. Audiffred, and T. Heine, Chem. Soc. Rev. 43, 6537 (2014) [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.