Open Access
Issue
E3S Web Conf.
Volume 309, 2021
3rd International Conference on Design and Manufacturing Aspects for Sustainable Energy (ICMED-ICMPC 2021)
Article Number 01035
Number of page(s) 5
DOI https://doi.org/10.1051/e3sconf/202130901035
Published online 07 October 2021
  1. Gianluca M. Tartaglia, Andrea Mapelli, Cinzia Maspero, Tommaso Santaniello, Marco Serafin, Marco Farronato, Alberto Caprioglio. Direct 3D Printing of Clear Orthodontic Aligners: Current State and Future Possibilities, Materials, (2021). [Google Scholar]
  2. Zinelis, S.; Eliades, T.; Eliades, G.; Makou, M.; Silikas, N. Comparative assessment of the roughness, hardness, and wear resistance of aesthetic bracket materials. Dent. Mater., 21, 890–894, (2005). [CrossRef] [PubMed] [Google Scholar]
  3. Dobrin, R.J.; Kamel, I.L.; Musich, D.R. Load-deformation characteristics of polycarbonate orthodontic brackets. Am. J. Orthod, 67, 24–33, (1975). [CrossRef] [PubMed] [Google Scholar]
  4. Kaur, S.; Singh, R.; Soni, S.; Garg, V.; Kaur, M. Esthetic orthodontic appliances-A review. Ann. Geriatr. Educ. Med. Sci., 5, 11–14, (2008). [Google Scholar]
  5. Leonardi, R. Cone-beam computed tomography and three-dimensional orthodontics. Where we are and future perspectives. J Orthod., 46, 45–48, (2019). [CrossRef] [PubMed] [Google Scholar]
  6. Shivapuja, P.; Shah, D.; Shah, N.; Shah, S. Direct 3D-Printed Orthodontic Aligners with Torque, Rotation, and Full Control Anchors. U.S. Patent No. 10,179,035, (2019). [Google Scholar]
  7. Prasad, S.; Kader, N.A.; Sujath, G.; Raj, T. 3D printing in dentistry. J. 3D Print. Med., 2, 89–91, (2018). [Google Scholar]
  8. Nguyen, T.; Jackson, T. 3D technologies for precision in orthodontics. Semin. Orthod., 24, 386–392, (2018). [Google Scholar]
  9. Jindal, P.; Juneja, M.; Siena, F.L.; Bajaj, D.; Breedon, P. Mechanical and geometric properties of thermoformed and 3D printed clear dental aligners. Am. J. Orthod. Dentofacial. Orthop., 156, 694–701, (2019). [CrossRef] [PubMed] [Google Scholar]
  10. Peeters, B.; Kiratli, N.; Semeijn, J. A barrier analysis for distributed recycling of 3D printing waste: Taking the maker movement perspective. J. Clean. Prod., 241, 118313, (2019). [Google Scholar]
  11. Mohnish Kumar, S. Cytotoxicity of 3D Printed Materials: An In Vitro Study, Sri Ramakrishna Dental College and Hospital: Coimbatore, India, (2019). [Google Scholar]
  12. Jindal, P.; Worcester, F.; Siena, F.L.; Forbes, C.; Juneja, M.; Breedon, P. Mechanical behaviour of 3D printed vs thermoformed clear dental aligner materials under non-linear compressive loading using FEM. J. Mech. Behav. Biomed. Mater., 112, 104045, (2020). [CrossRef] [PubMed] [Google Scholar]
  13. Maspero, C.; Tartaglia, G.M. 3D Printing of Clear Orthodontic Aligners: Where We Are and Where We Are Going. Materials, 13, 5204, (2020). [Google Scholar]
  14. Edelmann, A.; English, J.D.; Chen, S.J.; Kasper, F.K. Analysis of the thickness of 3-dimensional-printed orthodontic aligners. Am. J. Orthod. Dentofac. Orthop., 158, e91–e98, (2020). [Google Scholar]
  15. EnvisionTEC. Available online: https://envisiontec.com/orthodontic-materials-launched-at-lmt-lab-day-chicago (accessed on 11 November 2019). [Google Scholar]
  16. Nakano, H.; Kato, R.; Kakami, C.; Okamoto, H.; Mamada, K.; Maki, K. Development of Biocompatible Resins for 3D Printing of Direct Aligners. JPST, 32, 209–216, (2019). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.