Open Access
Issue
E3S Web Conf.
Volume 309, 2021
3rd International Conference on Design and Manufacturing Aspects for Sustainable Energy (ICMED-ICMPC 2021)
Article Number 01040
Number of page(s) 5
DOI https://doi.org/10.1051/e3sconf/202130901040
Published online 07 October 2021
  1. Anjana S1, Sahana M N2, Ankhit. K Nataranjan4,K R Shobha5, ”An IOT based 6Lo WPAN enabled experiment for water management“, IEEE ANTS, (2015). [Google Scholar]
  2. Peter MWANGI, Elijah MWANGI, Patrick M Karimi ”A low cost water meter System based on the Global System for Mobile communication”. International Journal of computer application. (0975-8887) volume 142-No.12, (2016). [Google Scholar]
  3. Rob, K and Gabor, M (2010). A perspective on radio frequency exposure associated with Residential Automatic meter reading Technology. California, USA Electrical power research InstituteCalifornia. [Google Scholar]
  4. N.R Kolhare, P.R Thorat “An Approach of Flow Measurement In Solar Water Heater Using Turbine Flow Meter”, International Journal of Engineering Research & Technology (IJERT), Vol. 2, (2013). [Google Scholar]
  5. Luis Castaiier, Vicente Jimenez, Manuel Dom'nguez, Francesc Masana and Angel Rodriguez, “Design and fabrication of a low cost water flow meter”, IEEE International Conference on Solid-State Sensors and Actuators, Vol. 5, pp. 159-162., (1997). [Google Scholar]
  6. Shiqian Cai and Haluk Toral, (1993) “Flowrate Measurement in Air-Water Horizontal Pipeline by Neural Networks”, International Joint Conference on Neural Networks, pp. 2013-2016, (1993). [Google Scholar]
  7. Santhosh KV and BK Roy, “An Intelligent Flow Measurement Technique using Ultrasonic Flow Meter with Optimized Neural Network”, International Journal of Control and Automation, Vol. 5, pp. 185-196, (2012). [Google Scholar]
  8. Young-Woo Lee, Seongbae Eun, Seung-Hyueb Oh, (2008) “Wireless Digital Water Meter with Low Power Consumption for Automatic Meter Reading”, International Conference on Convergence and Hybrid Information Technology IEEE, pp. 639-645, (2008). DOI 10.1109/ICHIT.19/2008.172. [Google Scholar]
  9. Javad Rezanejad Gatabi, Farshid Forouzbakhsh, Hadi Ebrahimi Darkhaneh, Zahra Rezanejad Gatabi, Majid Janipour, Iman Rezanejad Gatabi, “Auxillary Fluid Flow Meter”, European Journal of Scientific Research, Vol. 42, pp.84-92, (2010). [Google Scholar]
  10. Zhang Wenzhao, Liu Zhizhuang, Xu Xiao, Liu Ailing, Chen Aiwu, (2010), “A Liquid DP Flow Sensor on Straight Pipe”, International Conference on Industrial Mechatronics and Automation, Vol. 1, pp. 481-485, (2010). [Google Scholar]
  11. Kora, P., Kalva, S.R., Hybrid Bacterial Foraging and Particle Swarm Optimization for detecting Bundle Branch Block, SpringerPlus, 4 (1), art. no. 481, 19 p., (2015). [CrossRef] [PubMed] [Google Scholar]
  12. Prasanna Lakshmi, K., Reddy, C.R.K. A survey on different trends in Data Streams, ICNIT 2010 - 2010 International Conference on Networking and Information Technology, art. no. 5508473, pp. 451-455, (2010). [Google Scholar]
  13. Swaraja K, Medical image region based watermarking for secured telemedicine, Multimedia Tools and Applications, 77 (21), pp. 28249-28280, (2018). [Google Scholar]
  14. Kumar, S.K., Reddy, P.D.K., Ramesh, G., Maddumala, V.R. Image transformation technique using steganography methods using LWT technique, Traitement du Signal, 36 (3), pp. 233-237, (2019). [Google Scholar]
  15. Dhanalaxmi, B., Apparao Naidu, G., Anuradha, K., Adaptive PSO based association rule mining technique for software defect classification using ANN, Procedia Computer Science, 46, pp. 432-442, (2015). [CrossRef] [Google Scholar]
  16. Sankara B Babu, A Suneetha, G Charles Babu, Y Jeevan Nagendra Kumar, G Karuna, Medical disease prediction using grey wolf optimization and auto encoder based recurrent neural network, Periodicals of Engineering and Natural Sciences (PEN), (2018). [Google Scholar]
  17. Thwe Mu Han, OhnMar Myaing, “Design and Construction of Microcontroller-Based Water Flow Control System”, International Conference on Circuits, System and Simulation, Vol. 7, pp.304-309. [Google Scholar]
  18. Gang-Li Qiao-Zhen Feng Dong, “Study on wide range turbine flow meter”, Proceedings of theFifthInternational Conference on Machine Learning and Cybernetics IEEE, pp. 775-778, (2006). [Google Scholar]
  19. Enggcyclopedia, “Turbine Flow meters” Available:http://www.enggcyclopedia.com/2012/01/turbineflow-meters/ [Google Scholar]
  20. AKM semiconductors, “HallEffect sensor applicationguide” pp11. Available: http://ww.akm.com/Brochures/HallSensortechnicalguide.pdf KranthiMadala, NarendraBabuTatini, “IOT Based Agriculture – Field Monitoring and Irrigation Automation System”, International Journal of Recent trends in Engineering & Technology (IJRET), Volume-7, Issue-5, (2019). [Google Scholar]
  21. Ria Sood, Manjit Kaur, Hemant Lenka, Academic and Consultancy Services-Division Centre for Development of Advanced Computing(C-DAC), Mohali, India “Design And Development Of Automatic Water Flow Meter” in International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.3, No.3, (2013). [Google Scholar]
  22. Karsten Tawackoliana, Jankees Hogendoornb, Thomas Lederera, “Calibration of an ultrasonic flow meter for hot water“ in Flow Measurement and Instrumentation, Volume 30, Pages166-173, (2013). [Google Scholar]
  23. F. Heitmann, M. Juling, J. Steinbock, Physikalisch-Technische Bundesanstalt, Abbestrae, “Performance of the LDA Volumetric Flow Rate Standard Under Severely Disturbed Flow Conditions” in Flow Measurement and Instrumentation, Volume 74, Pages 101756, (2020). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.