Open Access
E3S Web Conf.
Volume 309, 2021
3rd International Conference on Design and Manufacturing Aspects for Sustainable Energy (ICMED-ICMPC 2021)
Article Number 01208
Number of page(s) 8
Published online 07 October 2021
  1. C. Li Qing (2004), Reliability based service life prediction of corrosion affected concrete structures, Journal of Structural Engineering, Vol. 130, No. 10, pp. 1570–1577, (2004). [Google Scholar]
  2. A. K. Azad, S. Ahmad and S. A. Azher, Residual strength of corrosion-damaged reinforced concrete Conductance(S) beams, ACI materials journal, Vol. 104, No. 1, pp. 40, Healthy (2007). [Google Scholar]
  3. W. Zhu, R. François, C. Zhang and D. Zhang, Propagation of corrosion-induced cracks of the RC beam exposed to marine environment under sustained load for a period of 26 years, Cement and Concrete Research, Vol. 103, pp. 66–76, (2018). [Google Scholar]
  4. J. Cao, L. Liu and S. Zhao, Relationship between Corrosion of Reinforcement and Surface Cracking Width in Concrete, Advances in Civil Engineering, (2020). [Google Scholar]
  5. J. Chen, P. Li, G. Song and Z. Ren, Piezo-based wireless sensor network for early-age concrete strength monitoring, Optik, Vol. 127, No. 5, pp. 2983–2987, (2016). [Google Scholar]
  6. W. Slika and G. Saad, An Ensemble Kalman Filter approach for service life prediction of reinforced concrete structures subject to chloride-induced corrosion, Construction and Building Materials, Vol. 115, pp. 132–142, (2016). [Google Scholar]
  7. M. Abdulkarem, K. Samsudin, F. Z. Rokhani and M. F. Rasid, Wireless sensor network for structural health monitoring: A contemporary review of technologies, challenges, and future direction, Structural Health Monitoring, Vol. 19, No. 3, pp. 693–735, (2020). [Google Scholar]
  8. C. Scuro, P. F. Sciammarella, F. Lamonaca, R. S. Olivito and D. L. Carni, IoT for structural health monitoring, IEEE Instrumentation & Measurement Magazine, Vol. 21, No. 6, pp. 4–14, (2018). [Google Scholar]
  9. S. H. Park, J. H. Yi, C. B. Yun and Y. R. Roh, Impedance-based damage detection for civil infrastructures, KSCE Journal of Civil Engineering, Vol. 8, No. 4, pp. 425–433, (2004). [Google Scholar]
  10. A. Abdelgawad and K. Yelamarthi, Structural health monitoring: Internet of things application, 2016 IEEE 59th International Midwest Symposium on Circuits and Systems (MWSCAS), IEEE, pp. 1–4, (2016). [Google Scholar]
  11. Q. Zhang and Z. Xiong, Crack detection of reinforced concrete structures based on BOFDA and FBG sensors, Shock and Vibration, pp. 2018 (2018). [Google Scholar]
  12. K. S. C. Kuang, W. J. Cantwell and C. Thomas, Crack detection and vertical deflection monitoring in concrete beams using plastic optical fibre sensors, Measurement Science and Technology, Vol. 14, No. 2, pp. 205, (2003). [Google Scholar]
  13. A. Mohan, S. Poobal, Crack detection using image processing: A critical review and analysis, Alexandria Engineering Journal, Vol. 57, No. 2, pp. 787–798, (2018). [Google Scholar]
  14. V. Giurgiutiu and G. Santoni-Bottai, Structural health monitoring of composite structures with piezoelectric-wafer active sensors, AIAA journal, Vol. 49, No. 3, pp. 565–581, (2011). [Google Scholar]
  15. Y. Yang, B. S. Divsholi and C. K. Soh, A reusable PZT transducer for monitoring initial hydration and structural health of concrete, Sensors, Vol. 10, No. 5, pp. 5193–5208, (2010). [Google Scholar]
  16. F. G. Baptista, D. E. Budoya, V. A. De Almeida and J. A. C. Ulson, An experimental study on the effect of temperature on piezoelectric sensors for impedance-based structural health monitoring. Sensors, Vol. 14, No. 1, pp. 1208–1227, (2014). [Google Scholar]
  17. G. Park, H. H. Cudney and D. J. Inman, Feasibility of using impedance-based damage assessment for pipeline structures. Earthquake engineering & structural dynamics, Vol. 30, No. 10, pp. 1463–1474, (2001). [Google Scholar]
  18. R. Shanker, S. Bhalla, A. Gupta and M. Praveen Kumar, Dual use of PZT patches as sensors in global dynamic and local electromechanical impedance techniques for structural health monitoring, Journal of Intelligent Material Systems and Structures, Vol. 22, No. 16, pp. 1841–1856, (2011). [Google Scholar]
  19. V. De Almeida, F. Baptista, L. Mendes and D. Budoya, Experimental analysis of piezoelectric transducers for impedance-based structural health monitoring, International Electronic Conference on sensors and applications, (2014). [Google Scholar]
  20. S. Bhalla and C. K. Soh, Electromechanical impedance modeling for adhesively bonded piezo-transducers, Journal of intelligent material systems and structures, Vol. 15, No. 12, pp. 955–972, (2004). [Google Scholar]
  21. G. Park, C. R. Farrar, A. C. Rutherford and A.N. Robertson, Piezoelectric active sensor self-diagnostics using electrical admittance measurements, pp. 469–476, (2006). [Google Scholar]
  22. W. S. Hwang and H. C. Park, Finite element modeling of piezoelectric sensors and actuators, AIAA journal, Vol. 31, No. 5, pp. 930–937, (1993). [Google Scholar]
  23. A. Myers, M. A. Mahmud, A. Abdelgawad and K. Yelamarthi, Toward integrating structural health monitoring with Internet of Things (IoT), In 2016 IEEE International Conference on Electro Information Technology (EIT), IEEE, pp. 0438–0441, (2016). [Google Scholar]
  24. T. Srinivas and M. Abinay Raj, Int. J. of Eng.and Adv. Tech. (IJEAT), ISSN: 2249 – 8958, Volume-8 Issue-6 (2019) [Google Scholar]
  25. T. srinivas and P. Manoj Anand, Int. J. of Innov. Tech. and Explor. Eng.g (IJITEE), ISSN: 2278-3075, Volume-8 Issue-12 (2019) [Google Scholar]
  26. T. Srinivas and G. Sukesh Reddy, Int. J. of Eng. and Adv. Tech. (IJEAT), ISSN: 2249 – 8958, Volume-9 Issue-1 (2019) [Google Scholar]
  27. T. Srinivas and R. N. Koushik, Int. J. of Innov. Tech. and Explor. Eng.g (IJITEE), ISSN: 2278-3075, Volume-8 Issue-12 (2019), PP 112–117. [Google Scholar]
  28. K. Sai Gopi, Dr. T. Srinivas and S. P. Raju V, E3S Web of Conferences ICMED 184, 01084GRIET, 28–29 February, (2020) [Google Scholar]
  29. Jagannadha Kumar, M.V., Jagannadha Rao, K., Dean Kumar, B., Srinivasa Reddy, V., Int. J. of Civil Eng. and Tech., 9(7), pp. 1133–1141 (2018) [Google Scholar]
  30. Ganta, J.K., Seshagiri Rao, M.V., Mousavi, S.S., Srinivasa Reddy, V., Bhojaraju, C., Structures 28, pp. 956–972 (2020) [Google Scholar]
  31. Naidu, K.S.S.T., Rao, M.V.S., Reddy, V.S., Int. J. of Innov. Tech. and Explor. Eng.g (IJITEE), 8(9 Special Issue 2), pp. 641–642 (2019) [Google Scholar]
  32. Chandana Priya, C.,Seshagiri Rao, M.V., Srinivasa Reddy, V., Int. J. of Civil Eng. and Tech., 9(11), pp. 2218–2225 (2018) [Google Scholar]
  33. Satya Sai Trimurty Naidu, K., Seshagiri Rao, M.V., Srinivasa Reddy, V., Int. J. of Civil Eng. and Tech., 9(11), pp. 2383–2393 (2018) [Google Scholar]
  34. Supriya, Y.,Srinivasa Reddy, V., Seshagiri Rao, M.V., Shrihari, S., Int. J. of Rec. Tech. and Engi., 8(3), pp. 5381–5385 (2019) [Google Scholar]
  35. Kotkunde, N., Krishna, G., Shenoy, S.K., Gupta, A.K., Singh, S.K. International Journal of Material Forming, 10 (2), pp. 255–266 (2017) [Google Scholar]
  36. Govardhan, D., Kumar, A.C.S., Murti, K.G.K., Madhusudhan Reddy, G. Materials and Design, 36, pp. 206–214. (2012) [Google Scholar]
  37. Kumar, P., Singhal, A., Mehta, S., Mittal, A. Journal of Real-Time Image Processing, 11 (1), pp. 93–109. (2016) [Google Scholar]
  38. Raghunadha Reddy, T., Vishnu Vardhan, B., Vijayapal Reddy, P. International Journal of Applied Engineering Research, 11 (5), pp. 3092–3102 (2016) [Google Scholar]
  39. Hussaini, S.M., Krishna, G., Gupta, A.K., Singh, S.K. Journal of Manufacturing Processes, 18, pp. 151–158 (2015) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.