Open Access
E3S Web Conf.
Volume 309, 2021
3rd International Conference on Design and Manufacturing Aspects for Sustainable Energy (ICMED-ICMPC 2021)
Article Number 01221
Number of page(s) 9
Published online 07 October 2021
  1. S. K. Tiwari, V. Kumar, A. Huczko, R. Oraon, A. D. Adhikari, & G. C. Nayak, Magical allotropes of carbon: prospects and applications. Critical Reviews in Solid State and Materials Sciences, 41(4), 257–317, (2016) [Google Scholar]
  2. T. W. Ebbesen, Carbon nanotubes. Annual review of materials science, 24(1), 235–264, (1994) [Google Scholar]
  3. R. C. Haddon, Carbon nanotubes. Accounts of Chemical Research, 35(12), 997–997, (2002) [Google Scholar]
  4. R. Y. Suckeveriene, E. Zelikman, G. Mechrez, & M. Narkis, Literature review: conducting carbon nanotube/polyanilinenanocomposites. Reviews in Chemical Engineering, 27 (1-2), 15–21, (2011) [Google Scholar]
  5. R. Saito et al., Physical Properties of Carbon Nanotubes. Imperial College Press ISBN 1-86094-093–5 (1998). [Google Scholar]
  6. H. W. Kroto, J. E. Fischer, & D. Cox, The fullerenes. Newnes, (2012). [Google Scholar]
  7. M. Chakraborty, & M. S. J. Hashmi, Wonder material graphene: Properties, synthesis and practical applications. Advances in Materials and Processing Technologies, 4(4), 573–602, (2018) [Google Scholar]
  8. A. A. A. Abuhagr, Ultrafast Relaxation Dynamics in Graphene Oxide-Dye and Perovskites Nanocomposites, (2019). [Google Scholar]
  9. Shenderova, O. (Ed.), Detonation nanodiamonds: science and applications. CRC Press. (2014). [Google Scholar]
  10. V. N. Mochalin, O. Shenderova, Ho, D., & Y. Gogotsi, The properties and applications of nanodiamonds. Nature nanotechnology, 7(1), 11–23, (2012) [Google Scholar]
  11. D. L. Zhao, & Chung, T. S., Applications of carbon quantum dots (CQDs) in membrane technologies: A review. Water research, 147, 43–49, (2018) [Google Scholar]
  12. V. N. Popov, Carbon nanotubes: properties and application. Materials Science and Engineering: R: Reports, 43(3), 61–102, (2004) [Google Scholar]
  13. M. Endo, T. Hayashi, Y. Ahm Kim, M. Terrones, & M. S. Dresselhaus, Applications of carbon nanotubes in the twenty–first century. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 362(1823), 2223–2238, (2004) [Google Scholar]
  14. M. Bottini, S. Bruckner, K. Nika, N. Bottini, S. Bellucci, A. Magrini, & T. Mustelin, Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicology letters, 160(2), 121–126, (2006) [Google Scholar]
  15. R. Sharma, A. K. Sharma, & V. Sharma, Synthesis of carbon nanotubes by arc-discharge and chemical vapor deposition method with analysis of its morphology, dispersion and functionalization characteristics. Cogent Engineering, 2(1), 1094017, (2005) [Google Scholar]
  16. K. S. Subrahmanyam, L. S. Panchakarla, A. Govindaraj, & C. N. R. Rao, Simple method of preparing graphene flakes by an arc-discharge method. The Journal of Physical Chemistry C, 113(11), 4257–4259, (2009) [Google Scholar]
  17. J. H. Hafner, M. J. Bronikowski, B. R. Azamian, P. Nikolaev, A. G. Rinzler, D. T. Colbert, K. A. Smith, R. E. Smalley, Catalytic growth of single-wall carbon nanotubes from metal particles. Chem. Phys. Lett., 296, 195–202, (1998) [Google Scholar]
  18. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, Xu, Ch., Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tománek, J. E. Fischer, R. E. Smalley, Crystalline ropes of metallic carbon nanotubes.Science, 273, 483–487, (1996) [Google Scholar]
  19. A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. A. Williams, S. Fang, K. R. Subbaswamy, M. Menon, A. Thess, R. E. Smalley, G. Dresselhaus, M. S. Dresselhaus, Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. Science, 275, 187–191, (1997) [Google Scholar]
  20. S. Amelinckx, X. B. Zhang, D. Bernaerts, X. F. Zhang, V. Ivanov, J. B. Nagy, A formation mechanism for catalytically grown helix-shaped graphite nanotubes. Science, 265, 635–639, (1994) [Google Scholar]
  21. R. Purohit, K. Purohit, S. Rana, R. S. Rana, & V. Patel, Carbon nanotubes and their growth methods. Procedia Materials Science, 6, 716–728, (2014) [Google Scholar]
  22. X. D. Wang, K. Vinodgopal, & G. P. Dai, Synthesis of Carbon Nanotubes by Catalytic Chemical Vapor Deposition. Perspective of Carbon Nanotubes, (2019). [Google Scholar]
  23. M. Lamberti, P. Pedata, N. Sannolo, S. Porto, A. De Rosa, & M. Caraglia, Carbon nanotubes: Properties, biomedical applications, advantages and risks in patients and occupationally-exposed workers. International journal of immunopathology and pharmacology, 28(1), 4–13, (2015) [Google Scholar]
  24. D. A. García-Hernández, A. Manchado, P. García-Lario, L. Stanghellini, E. Villaver, R. A. Shaw, ... & J. V. Perea-Calderón, Formation of fullerenes in H-containing planetary nebulae. The Astrophysical Journal Letters, 724(1), L39, (2010). [Google Scholar]
  25. L. Becker, R. J. Poreda, & T. E. Bunch, Fullerenes: An extraterrestrial carbon carrier phase for noble gases. Proceedings of the National Academy of Sciences, 97(7), 2979–2983, (2000) [Google Scholar]
  26. P. J. Harris, Impact of the Discovery of Fullerenes. Chemistry & Physics of Carbon: Volume 28, 28, 1, (2003). [Google Scholar]
  27. R. Bakry, R. M. Vallant, M. Najam-ul-Haq, M. Rainer, Z. Szabo, C. W. Huck, & G. K. Bonn, Medicinal applications of fullerenes. International journal of nanomedicine, 2(4), 639, (2007). [Google Scholar]
  28. M. Taghioskoui, Trends in graphene research. Materials today, 12(10), 34–37, (2009) [Google Scholar]
  29. S. Priyadarsini, S. Mohanty, S. Mukherjee, S. Basu, & M. Mishra, Graphene and graphene oxide as nanomaterials for medicine and biology application. Journal of Nanostructure in Chemistry, 8(2), 123–137, (2018) [Google Scholar]
  30. B. Brodie, On the Atomic Weight of Graphite. Philos. Trans. R. Soc. London, vol. 149, no. May, pp., 249–259, (1859) [Google Scholar]
  31. W. Gao, Graphite Oxide:Structure, Reduction and Applications, pp. 6–10, (2012) [Google Scholar]
  32. C. K. Chua and M. Pumera, Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem. Soc. Rev., vol. 43, no. 1, pp.291–312, (2014) [Google Scholar]
  33. W. S. Hummers and R. E. Offeman, Preparation of Graphitic Oxide. p. 1339, (1958). [Google Scholar]
  34. J. Chen, B. Li. C. Yao, & G. Shi, An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon, 64, 225–229, (2013) [Google Scholar]
  35. K. K. Santhosh, M. D. Modak, & P. Paik, Graphene oxide for biomedical applications. J. Nanomed. Res, 5, 00136, (2017). [Google Scholar]
  36. L. Basso, M. Cazzanelli, M. Orlandi, & A. Miotello, Nanodiamonds: Synthesis and application in sensing, catalysis, and the possible connection with some processes occurring in space. Applied Sciences, 10(12), 4094, (2020). [Google Scholar]
  37. O. (Ed.) Shenderova, Detonation nanodiamonds: science and applications. CRC Press, (2014). [Google Scholar]
  38. S. Chauhan, N. Jain, & U. Nagaich, Nanodiamonds with powerful ability for drug delivery and biomedical applications: Recent updates on in vivo study and patents. Journal of pharmaceutical analysis, 10(1), 1–12, (2020) [Google Scholar]
  39. K. Turcheniuk, & V. N. Mochalin, Biomedical applications of nanodiamond. Nanotechnology, 28(25), 252001, (2017) [Google Scholar]
  40. L. Moore, M. Gatica, H. Kim, E. Osawa, & D. Ho, Multi-protein delivery by nanodiamonds promotes bone formation. Journal of dental research, 92(11), 976–981, (2013) [Google Scholar]
  41. S. Y. Lim, W. Shen, & Z. Gao, Carbon quantum dots and their applications. Chemical Society Reviews, 44(1), 362–381. [Google Scholar]
  42. Y. Wang, & A. Hu, Carbon quantum dots: synthesis, properties and applications. Journal of Materials Chemistry C, 2(34), 6921–6939, (2014) [Google Scholar]
  43. N. Bajwa, N. K. Mehra, K. Jain, & N. K. Jain, Pharmaceutical and biomedical applications of quantum dots. Artificial cells, nanomedicine, and biotechnology, 44(3), 758–768, (2016) [Google Scholar]
  44. J. M. Schnorr, & T. M. Swager, Emerging applications of carbon nanotubes. Chemistry of Materials, 23(3), 646–657, (2011) [Google Scholar]
  45. S. Park, M. Vosguerichian, & Z. Bao, A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale, 5(5), 1727–1752, (2013) [Google Scholar]
  46. A. A. White, S. M. Best, & I. A. Kinloch, Hydroxyapatite–carbon nanotube composites for biomedical applications: a review. International Journal of Applied Ceramic Technology, 4(1), 1–13, (2007) [Google Scholar]
  47. B. Socas-Rodríguez, A. V. Herrera-Herrera, M. Asensio-Ramos, & J. Hernández-Borges, Recent applications of carbon nanotube sorbents in analytical chemistry. Journal of Chromatography A, 1357, 110–146, (2014) [Google Scholar]
  48. V. R. Raphey, T. K. Henna, K. P. Nivitha, P. Mufeedha, C. Sabu, & K. Pramod, Advanced biomedical applications of carbon nanotube. Materials Science and Engineering: C, 100, 616–630, (2019) [Google Scholar]
  49. A. W. Jensen, S. R. Wilson, & D. I. Schuster, Biological applications of fullerenes. Bioorganic & medicinal chemistry, 4(6), 767–779, (1996) [Google Scholar]
  50. J. R. Baena, M. Gallego & M. Valcarcel, Fullerenes in the analytical sciences. TrAC Trends in Analytical Chemistry, 21(3), 187–198, (2002) [Google Scholar]
  51. A. Bianco, & T. Da Ros, Biological applications of fullerenes. In Fullerenes, pp. 301–328, (2007) [Google Scholar]
  52. X. Zhang, & A. V. Teplyakov, Adsorption of C60 Buckminster Fullerenes on an 11-amino-1-undecene-covered Si (111) Substrate. Langmuir, 24(3), 810–820, (2008) [Google Scholar]
  53. B. C. Yadav, & R. Kumar, Structure, properties and applications of fullerenes. International Journal of Nanotechnology and Applications, 2(1), 15–24, (2008) [Google Scholar]
  54. C. Chung, Y. K. Kim, D. Shin, S. R. Ryoo, B. H. Hong & D. H. Min, Biomedical applications of graphene and graphene oxide. Accounts of chemical research, 46(10), 2211–2224, (2013) [Google Scholar]
  55. H. Shen, L. Zhang, M. Liu, & Z. Zhang, Biomedical applications of graphene. Theranostics, 2(3), 283, (2012). [Google Scholar]
  56. F. Perreault, A. F. De Faria, & M. Elimelech, Environmental applications of graphene-based nanomaterials. Chemical Society Reviews, 44(16), 5861–5896, (2015) [Google Scholar]
  57. Y. Huang, J. Liang, & Y. Chen, An overview of the applications of graphene‐based materials in supercapacitors. small, 8(12), 1805–1834, (2012) [Google Scholar]
  58. K. Toda, R. Furue, & S. Hayami, Recent progress in applications of graphene oxide for gas sensing: A review. Analytica chimica acta, 878, 43–53, (2015) [Google Scholar]
  59. V. N. Mochalin, O. Ho. D. Shenderova & Y. Gogotsi, The properties and applications of nanodiamonds. Nature nanotechnology, 7(1), 11–23, (2012) [Google Scholar]
  60. I. O. Pozdnyakova, Applications of nanodiamonds for separation and purification of proteins. Physics of the solid state, 46(4), 758–760, (2004) [Google Scholar]
  61. E. Torres Sangiao, A. M. Holban, & M. C. Gestal, Applications of nanodiamonds in the detection and therapy of infectious diseases. Materials, 12(10), 1639, (2019). [Google Scholar]
  62. T. Jamieson, R. Bakhshi, D. Petrova, R. Pocock, M. Imani, & A. M. Seifalian. Biological applications of quantum dots. Biomaterials, 28(31), 4717–4732, (2007) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.