Open Access
Issue
E3S Web Conf.
Volume 312, 2021
76th Italian National Congress ATI (ATI 2021)
Article Number 01003
Number of page(s) 22
Section Energy Storage and Integration of Energy Networks
DOI https://doi.org/10.1051/e3sconf/202131201003
Published online 22 October 2021
  1. IEA (International Energy Agency), World Energy Outlook, 2020. [Google Scholar]
  2. European Commission, Clean energy for all Europeans, 2019. [Google Scholar]
  3. Ministero dell’Ambiente e della Tutela del Territorio e del Mare, Ministero dello Sviluppo Economico, Ministero delle Infrastrutture e dei Trasporti, Ministero delle Politiche agricole Alimentari e Forestali, Strategia italiana di lungo termine sulla riduzione delle emissioni dei gas a effetto serra, 2021. [Google Scholar]
  4. P. Colbertaldo, S.B. Agustin, S. Campanari, J. Brouwer, Impact of hydrogen energy storage on California electric power system: Towards 100% renewable electricity, International Journal of Hydrogen Energy. 44 (2019) 9558–9576. https://doi.org/10.1016/j.ijhydene.2018.11.062. [Google Scholar]
  5. P. Colbertaldo, Power-to-Hydrogen for long term power and transport sector integration, Politecnico di Milano, 2019. [Google Scholar]
  6. P. Colbertaldo, G. Guandalini, S. Campanari, Modelling the integrated power and transport energy system: The role of power-to-gas and hydrogen in long-term scenarios for Italy, Energy. 154 (2018) 592–601. https://doi.org/10.1016/j.energy.2018.04.089. [Google Scholar]
  7. ENTSO-E, ENTSO-G, Ten-Year Network Development Plan 2018, 2017. [Google Scholar]
  8. G. Centore, Italgas scommette sull’isola: 500 milioni di investimenti, La Nuova Sardegna. (2019). https://www.lanuovasardegna.it/regione/2019/04/06/news/italgas-scommette-sull-isola-500-milioni-di-investimenti-1.17796863. [Google Scholar]
  9. Regione autonoma della Sardegna - Assessorato dell’Industria, Piano energetico ed ambientale della regione Sardegna 2014-2020. Proposta tecnica, 2014. [Google Scholar]
  10. European Commission, Proposal for a REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL establishing the framework for achieving climate neutrality and amending Regulation (EU) 2018/1999 (European Climate Law) - COM/2020/80 final, 2020. [Google Scholar]
  11. P. Colbertaldo, G. Guandalini, S. Campanari, Hydrogen for high-RES energy sector integration: Comparison of end-use pathways, in: Proceedings of SDEWES2019, Dubrovnik, Croatia, 2019. [Google Scholar]
  12. R. Hoefnagels, M. Junginger, G. Resch, C. Panzer, A. Held, RE-Shaping Project - Long Term Potentials and Costs of RES - Part I: Potentials, Diffusion and Technological learning, 2011. [Google Scholar]
  13. G. Gaudiosi, Offshore wind energy in the Mediterranean and other European seas, Renewable Energy. 5 (1994) 675–691. [Google Scholar]
  14. G. Gaudiosi, C. Borri, Offshore wind energy in the mediterranean countries, in: Revue Des Energies Renouvelabes SMEE 2010, 2010: pp. 173–188. [Google Scholar]
  15. IRENA, Electricity Storage and Renewables: Costs and Market to 2030, Abu Dhabi, 2017. [Google Scholar]
  16. IRENA, The Power to Change: Solar and Wind Cost Reduction Potential to 2025, 2016. [Google Scholar]
  17. IEA (International Energy Agency), Technology Roadmap - Solar Photovoltaic Energy, 2014. [Google Scholar]
  18. European Commission, EU Reference Scenario 2016 - Energy, transport and GHG emissions: Trends to 2050, 2016. [Google Scholar]
  19. GridTech. Deliverable D4.2: Analysis and discussion of the results of the four pan-European scenarios on the implementation of new innovative technologies fostering RES-Electricity and storage integration, 2015. [Google Scholar]
  20. GSE (Gestore Sistemi Energetici), Statistiche. https://www.gse.it/dati-e-scenari/statistiche (accessed April 22, 2021). [Google Scholar]
  21. Download center - Terna spa, (2021). https://www.terna.it/it/sistema-elettrico/transparency-report/download-center (accessed March 10, 2021). [Google Scholar]
  22. Ministero dello Sviluppo Economico, Ministero dell’Ambiente e della Tutela del Territorio e del Mare, Ministero delle Infrastrutture e dei Trasporti, Piano Nazionale Integrate per l’Energia e il Clima, 2019. [Google Scholar]
  23. P. Colbertaldo, S. Cerniauskas, T. Grube, M. Robinius, D. Stolten, S. Campanari, Clean mobility infrastructure and sector integration in long-term energy scenarios: The case of Italy, Renewable and Sustainable Energy Reviews. 133 (2020). https://doi.org/10.1016/j.rser.2020.110086. [Google Scholar]
  24. SNAM, The Hydrogen Challenge: The potential of hydrogen in Italy, 2019. [Google Scholar]
  25. CESI Ricerca, Risultati del censimento del potenziale mini-idro e realizzazione del sistema informativo territoriale, 2006. [Google Scholar]
  26. Decreto del Presidente del Consiglio dei Ministri. 10 agosto 2016. Individuazione della capacità complessiva di trattamento degli impianti di incenerimento di rifiuti urbani e assimilabili in esercizio o autorizzati a livello nazionale, nonché individuazi, Gazzetta Ufficiale Della Repubblica Italiana, Serie Generale, n. 233 del 5 ottobre 2016. [Google Scholar]
  27. European Commission, Directive 2009/28/EC for the promotion of the use of energy from renewable sources, Official Journal of the European Union. 140 (2009) 16–62. [Google Scholar]
  28. M.G. Prina, V. Casalicchio, C. Kaldemeyer, G. Manzolini, D. Moser, A. Wanitschke, W. Sparber, Multi-objective investment optimization for energy system models in high temporal and spatial resolution, Applied Energy. 264 (2020) 114728. https://doi.org/10.1016Zj.apenergy.2020.114728. [Google Scholar]
  29. S. Bellocchi, K. Klöckner, M. Manno, M. Noussan, M. Vellini, On the role of electric vehicles towards low-carbon energy systems: Italy and Germany in comparison, Applied Energy. 255 (2019) 113848. https://doi.org/10.1016/j.apenergy.2019.113848. [Google Scholar]
  30. Enel, The European House Ambrosetti, E-mobility revolution. Impacts on Italy and its industrial value chain: Italy’s Agenda, 2017. [Google Scholar]
  31. IEA, World Energy Outlook. World Energy Model. http://www.worldenergyoutlook.org/weomodel/ (accessed April 28, 2016). [Google Scholar]
  32. Automobile Club d’Italia (ACI), Annuario statistico. http://www.aci.it/laci/studi-e-ricerche/dati-e-statistiche/annuario-statistico.html (accessed August 13, 2018). [Google Scholar]
  33. IEA (International Energy Agency), Technology Roadmap - Hydrogen and Fuel Cells, 2015. [Google Scholar]
  34. EC, EU Reference Scenario 2016, EU Reference Scenario 2016. (2016) 27. https://doi.org/10.2833/9127. [Google Scholar]
  35. H2IT Associazione Italiana Idrogeno e Celle a Combustibile, Piano Nazionale di Sviluppo - Mobilità Idrogeno Italia, 2016. [Google Scholar]
  36. G. Guandalini, S. Campanari, Well-to-wheel driving cycle simulations for freight transportation: Battery and hydrogen fuel cell electric vehicles, in: 2018 International Conference of Electrical and Electronic Technologies for Automotive, AUTOMOTIVE 2018, AEIT, 2018. https://doi.org/10.23919/EETA.2018.8493216. [Google Scholar]
  37. A. Burke, M. Miller, Zero-Emission Medium-and Heavy-duty Truck Technology, Markets, and Policy Assessments for California, 2020. https://doi.org/10.7922/G23776ZB. [Google Scholar]
  38. Unione Petrolifera, Previsioni di domanda energetica e petrolifera italiana 2019-2040, 2019. [Google Scholar]
  39. T. Grube, Potentiale des Strommanagements zur Reduzierung des spezifischen Energiebedarfs von Pkw, Technische Universität Berlin, 2014. [Google Scholar]
  40. Energy consumption of full electric vehicles. https://ev-database.org/cheatsheet/energy-consumption-electric-car (accessed April 15, 2021). [Google Scholar]
  41. M. Weiss, K.C. Cloos, E. Helmers, Energy efficiency trade-offs in small to large electric vehicles, Environmental Sciences Europe. 32 (2020). https://doi.org/10.1186/s12302-020-00307-8. [Google Scholar]
  42. M. Robinius, J. Linßen, T. Grube, M. Reuß, P. Stenzel, K. Syranidis, P. Kuckertz, D. Stolten, Comparative Analysis of Infrastructures: Hydrogen Fueling and Electric Charging of Vehicles, in: Energy & Environment, Forschungszentrum Jülich GmbH, Jülich, Germany, 2018. [Google Scholar]
  43. Toyota Mira drives 1003 km (623 miles) on one fill of hydrogen, Green Car Congress. Energy, Technologies, Issues and Policies for Sustainable Mobility. (2021). [Google Scholar]
  44. D. Smith, R. Graves, B. Ozpineci, P.T. Jones, J. Lustbader, K. Kelly, K. Walkowicz, A. Birky, G. Payne, C. Sigler, J. Mosbacher, Medium- and Heavy-Duty Vehicle Electrification. An Assessment of Technology and Knowledge Gaps (US DOE report ORNL/SPR-2020/7), 2019. [Google Scholar]
  45. Hydrogen Council, Path to hydrogen competitiveness. A cost perspective, 2020. [Google Scholar]
  46. J. Lof, C. MacKinnon, G. Martin, D.B. Layzell, SURVEY OF HEAVY-DUTY HYDROGEN FUEL CELL ELECTRIC VEHICLES AND THEIR FIT FOR SERVICE IN CANADA, in: Transition Accelerator Report, 2020. [Google Scholar]
  47. J. Kast, R. Vijayagopal, J.J. Gangloff, J. Marcinkoski, Clean commercial transportation: Medium and heavy duty fuel cell electric trucks, International Journal of Hydrogen Energy. 42 (2017) 4508–4517. https://doi.org/10.1016/j.ijhydene.2016.12.129. [Google Scholar]
  48. DEFINE, DEFINE Synthesis Report, 2015. [Google Scholar]
  49. Lazard, Lazard’s Levelized Cost of Storage Analysis - Version 4.0, 2018. [Google Scholar]
  50. A. Ursua, L.M. Gandia, P. Sanchis, Hydrogen Production from Water Electrolysis: Current Status and Future Trends, Proceedings of the IEEE. 100 (2012) 410–426. [Google Scholar]
  51. Fuel Cells and Hydrogen Joint Undertaking (FCH JU), Multi - Annual Work Plan 2014-2020, 2014. [Google Scholar]
  52. DOE Technical Targets for Fuel Cell Systems for Stationary Applications. https://www.energy.gov/eere/fuelcells/doe-technical-targets-fuel-cell-systems-stationary-combined-heat-and-power. [Google Scholar]
  53. Fuel Cells and Hydrogen Joint Undertaking (FCH JU), Addendum to the Multi-Annual Work Plan 20142020, 2018. [Google Scholar]
  54. Gas Turbine World, 2019 GTW Handbook, vol. 34, 2019. [Google Scholar]
  55. B. Zlender, S. Kravanja, Cost optimization of the underground gas storage, Engineering Structures. 33 (2011) 2554–2562. https://doi.org/10.1016Zj.engstruct.2011.05.001. [Google Scholar]
  56. IEA Greenhouse Gas R&D Programme (IEA GHG), Co-Production of Hydrogen and Electricity by Coal Gasification with CO2 Capture - Updated Economic Analysis (Attachment C: Hydrogen Storage), 2008. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.