Open Access
E3S Web Conf.
Volume 312, 2021
76th Italian National Congress ATI (ATI 2021)
Article Number 01005
Number of page(s) 10
Section Energy Storage and Integration of Energy Networks
Published online 22 October 2021
  1. Diesendorf M and Elliston B 2018 The feasibility of 100% renewable electricity systems: A response to critics Renew. Sustain. Energy Rev. 93 318–30 [Google Scholar]
  2. Zappa W., Junginger M. and van den Broek, M. 2019 Is a 100% renewable European power system feasible by 2050? Appl. Energy 233-234 1027–50 [Google Scholar]
  3. Jensen S.O., Marszal-Pomianowska, A., Lollini, R., Pasut, W., Knotzer, A., Engelmann, P., Stafford, A. and Reynders, G. 2017 IEA EBC Annex 67 Energy Flexible Buildings Energy Build. 155 25–34 [Google Scholar]
  4. Rahmani-Andebili, M. 2017 Scheduling deferrable appliances and energy resources of a smart home applying multi-time scale stochastic model predictive control Sustain. Cities Soc. 32 338–347 [Google Scholar]
  5. Mancini F., Romano S., Lo Basso, G., Cimaglia, J. and De Santoli, L. 2020 How the italian residential sector could contribute to load flexibility in demand response activities: A methodology for residential clustering and developing a flexibility strategy Energies 13 3359 [Google Scholar]
  6. Chen Y., Xu P., Gu J., Schmidt F. and Li W. 2018 Measures to improve energy demand flexibility in buildings for demand response (DR): A review Energy Build. 177 125–139 [Google Scholar]
  7. Cumo F., Curreli F.R., Pennacchia E., Piras G. and Roversi R. 2017 Enhancing the urban quality of life: A case study of a coastal city in the metropolitan area of Rome WIT Trans. Built Environ. 170 127–137 [Google Scholar]
  8. Péan T., Costa-Castelló R. and Salom J. 2019 Price and carbon-based energy flexibility of residential heating and cooling loads using model predictive control Sustain. Cities Soc. 50 101579 [Google Scholar]
  9. Vázquez F.V., Koponen J., Ruuskanen V., Bajamundi C., Kosonen A., Simell P., Ahola J., Frilund C., Elfving J., Reinikainen M., Heikkinen N., Kauppinen J. and Piermartini P. 2018 Power-to-X technology using renewable electricity and carbon dioxide from ambient air: SOLETAIR proof-of-concept and improved process concept J. CO2 Util. 28 235–246 [Google Scholar]
  10. IRENA 2019 Innovation landscape for a renewable-powered future: solutions to integrate variable renewables [Google Scholar]
  11. The european parliament and the council of the european union 2014 Directive 2014/94/eu of the european parliament and of the council - of 22 October 2014 - on the deployment of alternative fuels infrastructure [Google Scholar]
  12. de Santoli L., Lo Basso G., Astiaso Garcia D., Piras G. and Spiridigliozzi G. 2019 Dynamic Simulation Model of Trans-Critical Carbon Dioxide Heat Pump Application for Boosting Low Temperature Distribution Networks in Dwellings Energies 12 484 [Google Scholar]
  13. Mazzoni S., Ooi S., Nastasi B. and Romagnoli A. 2019 Energy storage technologies as techno-economic parameters for master-planning and optimal dispatch in smart multi energy systems Appl. Energy 254 113682 [Google Scholar]
  14. Nastasi, B. 2019 Hydrogen policy, market, and R&D projects Solar Hydrogen Production: Processes, Systems and Technologies (Elsevier) pp 31–44 [Google Scholar]
  15. Nastasi B., Lo Basso G., Astiaso Garcia D., Cumo F. and de Santoli L. 2018 Power-to-gas leverage effect on power-to-heat application for urban renewable thermal energy systems Int. J. Hydrogen Energy 43 23076–90 [Google Scholar]
  16. D’Ettorre, F., De Rosa M., Conti, P., Testi, D. and Finn, D. 2019 Mapping the energy flexibility potential of single buildings equipped with optimally-controlled heat pump, gas boilers and thermal storage Sustain. Cities Soc. 50 [Google Scholar]
  17. Roversi R., Cumo F., D’Angelo, A., Pennacchia, E. and Piras, G. 2017 Feasibility of municipal waste reuse for building envelopes for near zero-energy buildings WIT Trans. Ecol. Environ. 224 115–125 [Google Scholar]
  18. Perpiña Castillo C., Batista, E. Silva, F. and Lavalle, C. 2016 An assessment of the regional potential for solar power generation in EU-28 Energy Policy 88 86–99 [Google Scholar]
  19. Mancini and Lo Basso 2020 How Climate Change Affects the Building Energy Consumptions Due to Cooling, Heating, and Electricity Demands of Italian Residential Sector Energies 13 410 [Google Scholar]
  20. Aste N., Del Pero C., Leonforte F. and Manfren M. 2013 A simplified model for the estimation of energy production of PV systems Energy 59 503–512 [Google Scholar]
  21. Mazzoni S., Ooi S., Nastasi B. and Romagnoli A. 2019 Energy storage technologies as techno-economic parameters for master-planning and optimal dispatch in smart multi energy systems Appl. Energy 254 113682 [Google Scholar]
  22. Kabir E., Kumar P., Kumar S., Adelodun A.A. and Kim K.-H. 2018 Solar energy: Potential and future prospects Renew. Sustain. Energy Rev. 82 894–900 [Google Scholar]
  23. Biyik E., Araz M., Hepbasli A., Shahrestani M., Yao R., Shao L., Essah E., Oliveira A.C., del Caño T., Rico E., Lechón J.L., Andrade L., Mendes A. and Atli Y.B. 2017 A key review of building integrated photovoltaic (BIPV) systems Eng. Sci. Technol. an Int. J. 20 833–858 [Google Scholar]
  24. Mancini, F. and Nastasi, B. 2020 Solar Energy Data Analytics: PV Deployment and Land Use Energies 13 417 [Google Scholar]
  25. Lezama F., Faia R., Faria P. and Vale Z. 2020 Demand Response of Residential Houses Equipped with PV- Battery Systems: An Application Study Using Evolutionary Algorithms Energies 13 2466 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.