Open Access
Issue
E3S Web Conf.
Volume 312, 2021
76th Italian National Congress ATI (ATI 2021)
Article Number 01007
Number of page(s) 18
Section Energy Storage and Integration of Energy Networks
DOI https://doi.org/10.1051/e3sconf/202131201007
Published online 22 October 2021
  1. IRENA. Electricity storage and renewables: Costs and markets to 2030. Abu Dhabi: 2017. [Google Scholar]
  2. IEA. Harnessing variable renewables: a guide to the balancing challenge. Paris, France: 2011. [Google Scholar]
  3. Hameer S., van Niekerk J.L. A review of large-scale electrical energy storage. Int J Energy Res 2015;39:1179–95. https://doi.org/10.1002/er.3294. [Google Scholar]
  4. IEA (International Energy Agency). Technology Roadmap - Energy storage. Paris, France: 2014. [Google Scholar]
  5. Astolfi M., Guandalini G., Belloli M., Hirn A., Silva P., Campanari S. Preliminary design and performance assessment of an underwater compressed air energy storage system for wind power balancing. J Eng Gas Turbines Power 2020;142. https://doi.org/10.1115/1.4047375. [Google Scholar]
  6. Wang J., Lu K., Ma L., Wang J., Dooner M., Miao S., et al. Overview of compressed air energy storage and technology development. Energies 2017;10. https://doi.org/10.3390/en10070991. [Google Scholar]
  7. Sant T., Buhagiar D., Farrugia R.N. Evaluating a new concept to integrate compressed air energy storage in spar-type floating offshore wind turbine structures. Ocean Eng 2018;166:232–41. https://doi.org/10.1016/j.oceaneng.2018.08.017. [Google Scholar]
  8. Pimm A.J., Garvey S.D., Drew R.J. Shape and cost analysis of pressurized fabric structures for subsea compressed air energy storage. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 225, 2011, p. 1027–43. https://doi.org/10.1177/0954406211399506. [Google Scholar]
  9. Rhodri J., Marc Costa R. Floating Offshore Wind: Market and Technology Review. UK: 2015. [Google Scholar]
  10. Equinor. Floating offshore wind in Equinor. Equinor 2017. https://www.equinor.comZen/what-we-do/floating-wind.html (accessed July 4, 2021). [Google Scholar]
  11. CleanTechnica. Hywind Scotland, World’s First Floating Wind Farm, Performing Better Than Expected 2018. https://cleantechnica.com/2018Z02Z16Zhywmd-scotland-worlds-first-floatmg-wind-farm-performing-better-expected/ (accessed July 4, 2021). [Google Scholar]
  12. EDP. WindFLoat Atlantic project n.d. https://www.edp.com/en/innovation/windfloat (accessed July 4, 2021). [Google Scholar]
  13. Campanari S., Colbertaldo P., Guandalini G. Renewable power-to-hydrogen systems and sector coupling power-mobility (in press). In: Van de Voorde, M., editor. Hydrog. Prod. Energy Transit., Berlin, Germany: Walter de Gruyter GmbH; 2021. https://doi.org/10.1515/9783110596250-018. [Google Scholar]
  14. Ursúa A., Gandía L.M., Sanchis P. Hydrogen production from water electrolysis: Current status and future trends. Proc. IEEE, vol. 100, Institute of Electrical and Electronics Engineers Inc.; 2012, p. 410–26. https://doi.org/10.1109/JPROC.2011.2156750. [Google Scholar]
  15. Bertuccioli L., Chan A., Hart D., Lehner F., Madden B., Standen E. Development of Water Electrolysis in the European Union. Lousanne: 2014. [Google Scholar]
  16. BALANCE EU project. Dynamic modelling of rSOC for grid stabilisation applications. 2019. [Google Scholar]
  17. STORE&GO EU project. Analysis on future technology options and on techno-economic optimization. 2019. [Google Scholar]
  18. Sunfire GmbH. SUNFIRE-HYLINK SOEC - Technical data 2020. [Google Scholar]
  19. Marie Solbrekke I., Gunnar Kvamsto N., Sorteberg A. Mitigation of offshore wind power intermittency by interconnection of production sites. Wind Energy Sci 2020;5:1663–78. https://doi.org/10.5194/wes-5-1663-2020. [Google Scholar]
  20. Götz M., Lefebvre J., Mörs F., McDaniel Koch A., Graf, F., Bajohr, S., et al. Renewable Power-toGas: A technological and economic review. Renew Energy 2016;85:1371–90. https://doi.org/10.1016/j.renene.2015.07.066. [Google Scholar]
  21. Altfeld K., Pinchbeck D. Admissible hydrogen concentrations in natural gas systems. Gas Energy 2013;March/2013:1–16. [Google Scholar]
  22. Thema M., Bauer F., Sterner M. Power-to-Gas: Electrolysis and methanation status review. Renew Sustain Energy Rev 2019;112:775–87. https://doi.org/10.1016/j.rser.2019.06.030. [Google Scholar]
  23. Arothron Ltd. Under Water CAES - Arothron 2019. http://arothron-es.com/ (accessed July 4, 2021). [Google Scholar]
  24. Environmentalenergy. UWCAES 2018. https://www.environmentalenergyinstitute.com/copy-of-yr21 (accessed July 4, 2021). [Google Scholar]
  25. NREL. System Advisor Model Version 2020.11.29 (SAM 2020.11.29) 2020. [Google Scholar]
  26. Löfberg J. YALMIP: A toolbox for modeling and optimization in MATLAB. Proc. IEEE Int. Symp. Comput. Control Syst. Des., 2004, p. 284–9. https://doi.org/10.1109/cacsd.2004.1393890. [Google Scholar]
  27. Gurobi Optimization. Gurobi Optimizer Version 3.0 2020. [Google Scholar]
  28. Crespi E., Colbertaldo P., Guandalini G., Campanari S. Design of hybrid power-to-power systems for continuous clean PV-based energy supply. Int J Hydrogen Energy 2021;46. https://doi.org/10.1016/j.ijhydene.2020.09.152. [Google Scholar]
  29. Puertos del Estado. Oceanography - Prediccion de oleaje, nivel del mar; Boyas y mareografos 2020. http://www.puertos.es/en-us/oceanografia/Pages/portus.aspx (accessed July 1, 2021). [Google Scholar]
  30. Pellegrini M., Guzzini A., Saccani C. A preliminary assessment of the potential of low percentage green hydrogen blending in the Italian Natural Gas Network. Energies 2020;13:5570. https://doi.org/10.3390/en13215570. [Google Scholar]
  31. Snam. Snam And Hydrogen 2020. https://www.snam.it/en/energy_transition/hydrogen/snam_and_hydrogen/ (accessed July 4, 2021). [Google Scholar]
  32. Schmidt O., Gambhir A., Staffell I., Hawkes A., Nelson J., Few S. Future cost and performance of water electrolysis: An expert elicitation study. Int J Hydrogen Energy 2017;42:30470–92. https://doi.org/10.1016/j.ijhydene.2017.10.045. [Google Scholar]
  33. Glatzmaier G. Developing a Cost Model and Methodology to Estimate Capital Costs for Thermal Energy Storage. Golden, CO (United States): 2011. https://doi.org/10.2172/1031953. [Google Scholar]
  34. ENTSO-E - European Network of Transmission System Operators. ENTSO-E Transparency Platform - Day-ahead Prices 2021. https://www.entsoe.eu/ (accessed April 7, 2021). [Google Scholar]
  35. Hu G., Chen C., Lu H.T., Wu Y., Liu C., Tao L., et al. A Review of Technical Advances, Barriers, and Solutions in the Power to Hydrogen (P2H) Roadmap. Engineering 2020;6:1364–80. https://doi.org/10.1016/j.eng.2020.04.016. [Google Scholar]
  36. EEA - European Environment Agency. Greenhouse gas emission intensity of electricity generation 2020. https://www.eea.europa.eu/data-and-maps/daviz/co2-emission-intensity-8 (accessed July 4, 2021). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.