Open Access
Issue
E3S Web Conf.
Volume 312, 2021
76th Italian National Congress ATI (ATI 2021)
Article Number 02012
Number of page(s) 10
Section Energy Efficiency of Buildings
DOI https://doi.org/10.1051/e3sconf/202131202012
Published online 22 October 2021
  1. G. Desogus, S. Mura, R. Ricciu, Comparing different approaches to in situ measurement of building components thermal resistance, Energ Build 43, 2613 (2011). [Google Scholar]
  2. Oral G.K., Yilmaz Z., The limit U values for building envelope related to building form in temperate and cold climatic zones. Build Environ 37, 1173–1180 (2002). [Google Scholar]
  3. Prada A., Cappelletti F., Baggio P., Gasparella A., On the effect of material uncertainties in envelope heat transfer simulations. Energy Build 71, 53–60 (2014). [Google Scholar]
  4. T. de Rubeis, I. Nardi, M. Muttillo, D. Paoletti, The restoration of severely damaged churches - Implications and opportunities on cultural heritage conservation, thermal comfort and energy efficiency, J Cult Herit 43, 186–203 (2020). [Google Scholar]
  5. ISO 6946 - Building components and building elements - Thermal resistance and thermal transmittance - Calculation methods. International Standard, Brussels, 2017. [Google Scholar]
  6. L. Evangelisti, C. Guattari, F. Asdrubali, Comparison between heat-flow meter and AirSurface Temperature Ratio techniques for assembled panels thermal characterization, Energy Build 203, 109441 (2019). [Google Scholar]
  7. L. Evangelisti, C. Guattari, T. de Rubeis, Preliminary analysis of the influence of environmental boundary conditions on convective heat transfer coefficients, J Phys Conf Ser 1868, 012024 (2021). [Google Scholar]
  8. A.A. Lechowska, J.A. Schnotale, G. Baldinelli, Window frame thermal transmittance improvements without frame geometry variations: An experimentally validated CFD analysis. Energy and Buildings 145, 188–199 (2017). [CrossRef] [Google Scholar]
  9. K. Martin, A. Campos-Celador, C. Escudero, I. Gómez, J.M. Sala, Analysis of a thermal bridge in a guarded hot box testing facility. Energy and Buildings 50, 139–149 (2012). [Google Scholar]
  10. T. de Rubeis, M. Muttillo, I. Nardi, L. Pantoli, V. Stornelli, D. Ambrosini, Integrated Measuring and Control System for Thermal Analysis of Buildings Components in Hot Box Experiments, Energies 12, 2053 (2019). [Google Scholar]
  11. T. de Rubeis, I. Nardi, M. Muttillo, Development of a low-cost temperature data monitoring. An upgrade for hot box apparatus, J Phys Conf Ser 923, 012039 (2017). [Google Scholar]
  12. UNI EN ISO 8990. Thermal Insulation—Determination of Steady-State Thermal Transmission Properties - Calibrated and Guarded Hot Box; International Standard Organization: Geneva, Switzerland, 1999. [Google Scholar]
  13. Sami A. Al-Sanea, M.F. Zedan, M.B. Al-Harbi, Heat transfer characteristics in airconditioned rooms using mixing air-distribution system under mixed convection conditions, International Journal of Thermal Sciences 59, 247–259 (2012). [CrossRef] [Google Scholar]
  14. T.L. Bergman, A.S. Lavine, F.P. Incropera, D.P. Dewitt, Fundamentals of Heat and Mass Transfer, John Wiley & Sons, 2017, ISBN 13 978-0470-50197-9. [Google Scholar]
  15. J.P. Holman, Experimental methods for engineers, 8th ed.; McGraw-Hill series in mechanical engineering; ISBN-13: 978-0-07-352930-1. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.