Open Access
E3S Web Conf.
Volume 312, 2021
76th Italian National Congress ATI (ATI 2021)
Article Number 03004
Number of page(s) 14
Section Innovation in Heat Transfer Issues
Published online 22 October 2021
  1. G. Starace, M. Fiorentino, M.P. Longo, E. Carluccio, A hybrid method for the cross flow compact heat exchangers design, Appl. Therm. Eng., 111, 1129–1142 (2017) [Google Scholar]
  2. E. Carluccio, G. Starace, A. Ficarella, D. Laforgia, Numerical analysis of a cross-flow compact heat exchanger for vehicle applications, Appl. Therm. Eng. E 25, 13, 1995—2013 (2005) [Google Scholar]
  3. M. Fiorentino, G. Starace, The design of countercurrent evaporative condensers with the hybrid method, Appl. Therm. Eng., 130, 889–898 (2018) [Google Scholar]
  4. G. Starace, M. Fiorentino, B. Meleleo, C. Risolo, The hybrid method applied to the plate-finned tube evaporator Geometry, Int. J. Refrigeration, 88, 67–77 (2018) [Google Scholar]
  5. J.M. Corberan, P. Fernandez de Cordoba, S. Ortuno, V. Ferri, T. Setaro, G. Boccardi, Modelling of tube and fin coils working as evaporator or condenser, Proceedings of the 3rd European Thermal Sciences Conference, Heidelberg, Germany (2000) [Google Scholar]
  6. A.H. Tarrad, A.K. Al-Nadawi, Modelling of finned-tube using pure and zeotropic blend refrigerants, ATINER’S Conference Paper Series TEN2015-1548, Athens, Greece (2015) [Google Scholar]
  7. L. Tong, H. Li, L. Wang, X. Sun, Y. Xie, The effect of evaporator operating parameters on the flow patterns inside horizontal pipes, J. Therm. Sci. E 20, 4, 324–331 (2011) [Google Scholar]
  8. C.M. Joppolo, L. Molinaroli, A. Pasini, Numerical analysis of the influence of circuit arrangement on a fin-and-tube condenser performance, Case Stud. Therm. Eng., 6, 136–146 (2015) [Google Scholar]
  9. P.A. Domanski, D. Yashar, Optimization of finned-tube condensers using an intelligent system, Int. J. Refrigeration, 30, 482–488 (2007) [Google Scholar]
  10. Z. Wu, G. Ding, K. Wang, M. Fukaya, Application of a genetic algorithm to optimize the refrigerant circuit of fin-and-tube heat exchangers for maximum heat transfer or shortest tube, Int. J. Therm. Sci., 47, 985–997 (2008) [Google Scholar]
  11. H.Y. Ye, K.S. Lee, 2012. Refrigerant circuitry design of fin-and-tube condenser based on entropy generation minimization, Int. J. Refrigeration, 35, 1430–1438. [Google Scholar]
  12. J.Y. Yun, K.S. Lee, Influence of design parameters on the heat transfer and flow friction characteristics of the heat exchanger with slit fins, Int. J. Heat Mass Transfer, 43, 2529–2539 (2000) [Google Scholar]
  13. R.S. Matos, T.A. Laursen, J.V.C. Vargas, A. Bejan, 2004. Three-dimensional optimization of staggered finned circular and elliptic tubes in forced convection, Int. J. Thermal Sci., 43, 477–487 (2004) [Google Scholar]
  14. M. Yilmaz, O. Comakli, S. Yapici, O.N. Sara, Performance evaluation criteria for heat exchangers based on first law analysis., J. Enhanc. Heat Transf. E 12, 2 121–157 (2005) [Google Scholar]
  15. M. Yilmaz, S. Karsli, O.N. Sara, Performance evaluation criteria for heat exchangers based on second law analysis, Exergy Int. J. E 1, 4 278–294 (2001) [Google Scholar]
  16. R.L. Webb, N.H. Kim, Principles of enhanced heat transfer (Taylor & Francis Inc, 2005) [Google Scholar]
  17. T.Y. Choi, Y.J. Kim, M.S. Kim, S.T. Ro, Evaporation heat transfer of R-32, R-134a, R-32/134a and R-32/125/134a inside a horizontal smooth tube, Int. J. Heat Mass Transf. E 43, 19 3651–3660 (2000) [Google Scholar]
  18. K. Stephan, M. Abdelsalam, Heat transfer correlations for natural convection boiling, Int. J. Heat Mass Transf. E 23, 1 73–87 (1980) [Google Scholar]
  19. B. Pierre, Flow resistance with boiling refrigerants - Part 1, ASHRAE J. E 6, 9, 58–65 (1964) [Google Scholar]
  20. A. Bourabaa, M. Saighi, I. Belal, The influence of the inlet conditions on the air side heat transfer performance of plain finned evaporator, Int. J. Math. Comput. Phys. Elect. Comput. Eng. E 5, 11 1667–1670 (2011) [Google Scholar]
  21. C.C. Wang, Y.T. Lin, C.J. Lee, An airside correlation for plain fm-and-tube heat exchangers in wet conditions, Int. J. Heat Mass Transf. E 43, 10 1869–1872 (2000) [Google Scholar]
  22. K. Thulukkanam, Heat Exchanger Design Handbook, CRC Press (2013) [Google Scholar]
  23. W.M. Kays, A.L. London, Compact Heat Exchanger, third ed. McGraw-Hill, New York (1984) [Google Scholar]
  24. X. Ma, G. Dinga, Y. Zhanga, K. Wang, Airside heat transfer and friction characteristics for enhanced fm-and-tube heat exchanger with hydrophilic coating under wet conditions, Int. J. Refrigeration E 30, 7 1153–1167 (2007) [Google Scholar]
  25. S.Y. Liang, T.N. Wong, 2010. Experimental validation of model predictions on evaporator coils with an emphasis on fin efficiency, Int. J. Therm. Sci., 49, 187–195 (2010) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.