Open Access
Issue
E3S Web Conf.
Volume 312, 2021
76th Italian National Congress ATI (ATI 2021)
Article Number 05009
Number of page(s) 15
Section Hydraulics and Pneumatics
DOI https://doi.org/10.1051/e3sconf/202131205009
Published online 22 October 2021
  1. J. Kargul et al., Design and Demonstration of EPA’s Integrated Drive Module for Commercial Series Hydraulic Hybrid Trucks and Buses, SAE Int. J. Commer. Veh., 8(2), 549–567 (2015) [Google Scholar]
  2. P. Buchwald et al., Improvement of Citybus Fuel Economy Using a Hydraulic Hybrid Propulsion System — A Theoretical and Experimental Study, SAE Transactions, 790305 (1979) [Google Scholar]
  3. Hydraulic Launch Assist the Eaton HLA® System, Eaton HLA1.ppt, 2008. [Google Scholar]
  4. S. Hui, J. Ji-hai, W. Xin, Torque control strategy for a parallel hydraulic hybrid vehicle, J. Terramechanics, 46, 259–265 (2009) [Google Scholar]
  5. T. Liu et al., A Study on Control Strategy of Regenerative Braking in the Hydraulic Hybrid Vehicle Based on ECE Regulations, Math. Probl. Eng., 2013 (2013) [Google Scholar]
  6. S. Hui, Multi-objective optimization for hydraulic hybrid vehicle based on adaptive simulated annealing genetic algorithm, Eng. Appl. Artif. Intell., 23, 27–33 (2010) [Google Scholar]
  7. Y. Chen et al., Dynamic analysis of energy storage unit of the hydraulic hybrid vehicle Int. J. Automot. Technol., 14, 101–112 (2013) [Google Scholar]
  8. Y. Yan, G. Liu, J. Chen, Parameter design strategies of a parallel hydraulic hybrid bus, IEEE VPPC, 1–6 (2008) [Google Scholar]
  9. Y. Yan, G. Liu, J. Chen, Integrated modeling and optimization of a parallel hydraulic hybrid bus, Int. J. Automot. Technol. 11, 97–104 (2010) [Google Scholar]
  10. S. Zhou, P. Walker, N. Zhang, Parametric design and regenerative braking control of a parallel hydraulic hybrid vehicle, Mech. Mach. Theory, 146 (2020) [Google Scholar]
  11. B. Wu et al., Optimization of power management strategies for a hydraulic hybrid medium truck, Proceedings of the 6th international symposium on advanced vehicle control (AVEC ’02), 6 (2002) [Google Scholar]
  12. Y. J. Kim, Z. Filipi, Simulation study of a series hydraulic hybrid propulsion system for a light truck, Int. J. Commer. Veh., 116, 147–161 (2007) [Google Scholar]
  13. P. Matheson, J. Stecki, Development and Simulation of a Hydraulic-Hybrid Powertrain for use in Commercial Heavy Vehicles, Int. J. Commer. Veh., 112, 114–123 (2003) [Google Scholar]
  14. Z. Filipi et al., Combined optimisation of design and power management of the hydraulic hybrid propulsion system for the 6 x 6 medium truck, Int. J. Heavy Veh. Syst., 11, 372–402 (2004) [Google Scholar]
  15. G. H. Payeganeh, M. Esfahanian, S. Pakdel Bonab, Modeling and Fuzzy Control Strategy Design for the Hydraulic Hybrid Refuse Truck, ISE, 4, 685–698 (2014) [Google Scholar]
  16. B. Wu et al., Optimal power management for a hydraulic hybrid delivery truck, Veh. Syst. Dyn., 45, 23–40 (2004) [Google Scholar]
  17. Simcenter Amesim 2020. 1. Siemens Industry Software NV. [Google Scholar]
  18. https://dieselnet.com/standards/cycles/index.php [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.