Open Access
Issue
E3S Web Conf.
Volume 312, 2021
76th Italian National Congress ATI (ATI 2021)
Article Number 08006
Number of page(s) 10
Section Systems for Sustainable Energy Generation
DOI https://doi.org/10.1051/e3sconf/202131208006
Published online 22 October 2021
  1. J. S. Pereira, J. B. Ribeiro, R. Mendes, J. C. André, “Analysis of a hybrid (topping/bottoming) ORC based CHP configuration integrating a new evaporator design concept for residential applications”, Applied Thermal Engineering, 160, 1–11, (2019). [Google Scholar]
  2. D. Mikielewicz, J. Mikielewicz, “A thermodynamic criterion for selection of working fluid for subcritical and supercritical domestic micro-CHP”, Applied Thermal Engineering, 30, 2357–2362, (2010). [CrossRef] [Google Scholar]
  3. A. Franco, F. Bellina, “Methods for optimized design and management of CHP systems for district heating networks (DHN)”, Energy Conversion and Management, 172, 21–31, (2018). [CrossRef] [Google Scholar]
  4. L. Cioccolanti, R. Tascioni, A. Arteconi, “Simulation analysis of an innovative micro-solar 2kWe Organic Rankine Cycle plant for residential applications”, Energy Procedia, 142, 1629–1634, (2017). [CrossRef] [Google Scholar]
  5. A. M. Pantaleo, S. M. Camporeale, A. Miliozzi, V. Russo, N. Shah, C. N. Markides, “Novel hybrid CSP-biomass CHP for flexible generation: Thermo-economic analysis and profitability assessment”, Applied Energy, 204, 994–1006, (2017). [CrossRef] [Google Scholar]
  6. J. Wang, Z. Yan, P. Zhao, Y. Dai, “Off-design performance analysis of a solar-powered organic Rankine cycle”, Energy Conversion and Management, 80, 150–157, (2014). [CrossRef] [Google Scholar]
  7. P. Ouyang, Y. Xu, L. Qi, S. Xing, H. Fooladi, “Comprehensive evaluation of flat plate and parabolic dish solar collectors’ performance using different operating fluids and MWCNT nanofluid in different climatic conditions”, Energy Reports, 7, 2436–2451, (2021). [CrossRef] [Google Scholar]
  8. M. Petrollese, D. Cocco, “Robust optimization for the preliminary design of solar organic Rankine cycle (ORC) systems”, Energy Conversion and Management, 184, 338–349, (2019). [CrossRef] [Google Scholar]
  9. CODE 2 - Cogeneration Observatory and Dissemination Europe. Micro-CHP potential analysis - European level report, (2014). [Google Scholar]
  10. M. Astolfi, “Techno-economic Optimization of Low Temperature CSP Systems Based on ORC with Screw Expanders”, Energy Procedia, 69, 1100–1112, (2015). [CrossRef] [Google Scholar]
  11. M. Peters, T. S. Schmidt, D. Wiederkehr, M. Schneider, “Shedding light on solar technologies—A techno-economic assessment and its policy implications”, Energy Policy, 39, 6422–6439, (2011). [CrossRef] [Google Scholar]
  12. J. M. Rodriguez, D. Sanchez, G. S. Martinez, E. Bennouna, B. Ikken, “Techno-economic assessment of thermal energy storage solutions for a 1MWe CSP-ORC power plant”, Solar Energy, 140, 206–218, (2016). [CrossRef] [Google Scholar]
  13. W. Fan, Z. Han, P. Li, Y. Jia, “Analysis of the thermodynamic performance of the organic Rankine cycle (ORC) based on the characteristic parameters of the working fluid and criterion for working fluid selection”, Energy Conversion and Management, 211, 1–18, (2020). [Google Scholar]
  14. S. Quoilin, M. Orosz, H. Hemond, V. Lemort, “Performance and design optimization of a low-cost solar organic Rankine cycle for remote power generation”, Solar Energy, 85, 955–966, (2011). [CrossRef] [Google Scholar]
  15. R. Kong, T. Deethayat, A. Asanakham, N. Vorayos, T. Kiatsiriroat, “Thermodynamic performance analysis of a R245fa organic Rankine cycle (ORC) with different kinds of heat sources at evaporator”, Case Studies in Thermal Engineering, 13, 1–10, (2019). [Google Scholar]
  16. M. Santos, J. André, E. Costa, R. Mendes, J. Ribeiro, “Design strategy for component and working fluid selection in a domestic micro-CHP ORC boiler”, Applied Thermal Engineering, 169, (2020). [Google Scholar]
  17. J. Lizana, C. Bordin, T. Rajabloo, “Integration of solar latent heat storage towards optimal small-scale combined heat and power generation by Organic Rankine Cycle”, Journal of Energy Storage, 29, (2020). [Google Scholar]
  18. A. M. Pantaleo, S. M. Camporeale, A. Sorrentino, A. Miliozzi, N. Shah, C. N. Markides, “Solar/biomass hybrid cycles with thermal storage and bottoming ORC: System integration and economic analysis”, Energy Procedia, 129, 724–731, (2017). [CrossRef] [Google Scholar]
  19. D. Vittorini, A. Antonini, R. Cipollone, R. Carapellucci, C. Villante, “Solar Thermal-Based ORC Power Plant for Micro Cogeneration - Performance Analysis and Control Strategy”, Energy Procedia, 148, (2018). [Google Scholar]
  20. P. K. S. Rathore, S. K. Shukla, “Enhanced thermophysical properties of organic PCM through shape stabilization for thermal energy storage in buildings: A state of the art review”, Energy and Buildings, 236, 1–29, (2021). [Google Scholar]
  21. C. Prieto, L. F. Cabeza, “Thermal energy storage (TES) with phase change materials (PCM) in solar power plants (CSP). Concept and plant performance”, Applied Energy, 254, (2019). [Google Scholar]
  22. S. H. Gage, D. Kesseli, J. Dupree, C. Kimbal, J. Rigby, J. Yates, B. Morrison, G. Bigham, C. S. Turchi, “Technical and economic feasibility of molten chloride salt thermal energy storage systems”, Solar Energy Materials and Solar Cells, 226, 1–8, (2021). [Google Scholar]
  23. X. Li, E. Xu, S. Song, X. Wang, G. Yuan, “Dynamic simulation of two-tank indirect thermal energy storage system with molten salt, Renewable Energy”, 113, 1311–1319, (2017). [Google Scholar]
  24. W. Wang, S. Guo, H. Li, J. Yan, J. Zhao, X. Li, J. Ding, “Experimental study on the direct/indirect contact energy storage container in mobilized thermal energy system (M-TES)”, Applied Energy, 119, (2014). [Google Scholar]
  25. J. Xu, C. Yu, “Critical temperature criterion for selection of working fluids for subcritical pressure Organic Rankine cycles”, Energy, 74, 719–733, (2014). [CrossRef] [Google Scholar]
  26. K. Thurairaja, A. Wijewardane, S. Jayasekara, C. Ranasinghe, “Working Fluid Selection and Performance Evaluation of ORC”, Energy Procedia, 156, 244–248, (2019). [CrossRef] [Google Scholar]
  27. D. Vittorini, R. Cipollone, R. Carapellucci, “Enhanced heat exchanger layout for optimum energy performance in solar thermal ORC-based unit”, AIP Conference Proceedings, 2191, (2019). [Google Scholar]
  28. D. Vittorini, R. Cipollone, R. Carapellucci, “Enhanced performances of ORC-based units for low grade waste heat recovery via evaporator layout optimization”, Energy Conversion and Management, 197, (2019). [Google Scholar]
  29. M. Wang, Y. Chen, Q. Liu, Z. Yuanyuan, “Thermodynamic and thermo-economic analysis of dual-pressure and single pressure evaporation organic Rankine cycles”, Energy Conversion and Management, 177, 718–736, (2018). [CrossRef] [Google Scholar]
  30. T. Li, Z. Zhang, J. Lu, J. Yang, Y. Hu, “Two-stage evaporation strategy to improve system performance for organic Rankine cycle”, Applied Energy, 150, 323–334, (2015). [CrossRef] [Google Scholar]
  31. M. Imran, M. Usman, B. Park, D. Lee, “Volumetric expanders for low grade heat and waste heat recovery applications”, Renewable and Sustainable Energy Reviews, 57, 1090–1109, (2016). [CrossRef] [Google Scholar]
  32. P. Song, M. Wei, L. Shi, S. N. Danish, C. Ma, “A review of scroll expanders for organic Rankine cycle systems”, Applied Thermal Engineering, 75, 54–64, (2015). [CrossRef] [Google Scholar]
  33. F. Fatigati, M. Di Bartolomeo, D. Di Battista, R. Cipollone, “A dual-intake-port technology as a design option for a Sliding Vane Rotary Expander of small-scale ORC-based power units”, Energy Conversion and Management, 209, (2020). [Google Scholar]
  34. D. Vittorini, A. Antonini, R. Cipollone, R. Carapellucci, “Multi-Variable Control and Optimization Strategy for Domestic SolarORC Combined Heat and Power Generation System”, E3S Web Conf., 197, (2020). [Google Scholar]
  35. https://midcdmz.nrel.gov/solpos/solpos.html [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.