Open Access
Issue
E3S Web Conf.
Volume 312, 2021
76th Italian National Congress ATI (ATI 2021)
Article Number 08011
Number of page(s) 14
Section Systems for Sustainable Energy Generation
DOI https://doi.org/10.1051/e3sconf/202131208011
Published online 22 October 2021
  1. M. Borg, M. Collu, A comparison between the dynamics of horizontal and vertical axis offshore floating wind turbines, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 373. 20140076, (2015) [CrossRef] [PubMed] [Google Scholar]
  2. M. Borg, M. Collu, F. P. Brennan, Offshore floating vertical Axis wind turbines: advantages, disadvantages, and dynamics modelling state of the art, in: Mar. Offshore Renew. Energy (MORE 2012), 26–27 sept. (2012), London, UK [Google Scholar]
  3. C. S. Ferreira, G. J. W. van Bussel, G. van Kuik, An analytical method to predict the variation in performance of a H-Darrieus in skewed flow and its experimental validation, in: Eur. Wind energy conf.; (2006) [Google Scholar]
  4. A. Orlandi, M. Collu, S. Zanforlin, A. Shires, 3D URANS analysis of a vertical axis wind turbine in skewed flows, J. Wind Engin. & Industrial Aerodyn. 147: 77–84, (2015). https://doi.org/10.1016/jjweia.2015.09.010 [CrossRef] [Google Scholar]
  5. J. O. Dabiri, Potential order-of-magnitude enhancement of wind farm power density via counter-rotating vertical-axis wind turbine arrays, J. Renew. Sustain. Energy 3:43104, (2011) [Google Scholar]
  6. M. Kinzel, Q. Mulligan, J. O. Dabiri, Energy exchange in an array of vertical-axis wind turbines, J. of Turbulence 13, pp. 1–13, (2012) [Google Scholar]
  7. I. D. Brownstein, N. J. Wei, J. O. Dabiri, Aerodynamically Interacting Vertical-AxisWind Turbines: Performance Enhancement and Three-Dimensional Flow, Energies 12: 2724, (2019) [CrossRef] [Google Scholar]
  8. S. Zanforlin, T. Nishino, Fluid dynamic mechanisms of enhanced power generation by closely spaced vertical axis wind turbines, Renew. Energy 99: 12 13–26, (2016) [Google Scholar]
  9. S. Zanforlin, Advantages of vertical axis tidal turbines set in close proximity: A comparative CFD investigation in the English Channel, Ocean Engin. 156 358–372, (2018) [CrossRef] [Google Scholar]
  10. P. Bachant, M. Wosnik, Characterising the near-wake of a cross-flow turbine, J. of Turbulence 16(4):392–410, (2015) [CrossRef] [Google Scholar]
  11. V.F.-C. Rolin, F. Porté-Agel, Experimental investigation of vertical-axis wind-turbine wakes in boundary layer flow, Renew. Energy 118:1–13, (2018) [CrossRef] [Google Scholar]
  12. K. J. Ryan, F. Coletti, C. J. Elkins, J. O. Dabiri, J. K. Eaton, Three-dimensional flow field around and downstream of a subscale model rotating vertical axis wind turbine, Exp. Fluids 57:38, (2016) [CrossRef] [Google Scholar]
  13. S. Zanforlin, P. Lupi, Fluid Dynamic Mechanisms for the Wake Energy Recovery in Cross-Flow Turbines: Effects of Hydrofoil Shape and Turbine Solidity. IX International Conference on Computational Methods in Marine Engineering, MARINE 2021, Edinburgh, Scotland, UK June 2-3 (2021) [Google Scholar]
  14. A. Vergaerde, T. De Troyer, S. Muggiasca, I. Bayati, M. Belloli, J. Kluczewska-Bordier, N. Parneix, F. Silvert, M. C. Runacres, Experimental characterisation of the wake behind paired vertical-axis wind turbines, J. Wind Engin. & Industrial Aerodyn 206:104353, (2020) [CrossRef] [Google Scholar]
  15. P. Ouro, S. Runge, Q. Luo, T. Stoesser, Three-dimensionality of the wake recovery behind a vertical axis turbine, Renew. Energy 133: 1066–1077, (2019) [CrossRef] [Google Scholar]
  16. A. Posa, Dependence of the wake recovery downstream of a Vertical Axis Wind Turbine on its dynamic solidity. J. Wind Engin. & Industrial Aerodyn. 202:104212, (2020) [CrossRef] [Google Scholar]
  17. T. Maître, E. Amet, C. Pellone, Modeling of the flow in a Darrieus water turbine: Wall grid refinement analysis and comparison with experiments, Renew. Energy 51: 497–512, (2013) [CrossRef] [Google Scholar]
  18. F. R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J. 32: 1598–1605, (1994) [CrossRef] [Google Scholar]
  19. D. C. Wilcox, Formulation of the k-m turbulence model revisited, AIAA J. 46: 2823–2838, (2008) [CrossRef] [Google Scholar]
  20. F. Balduzzi, A. Bianchini, R. Maleci, G. Ferrara, L. Ferrari, Critical issues in the CFD simulation of Darrieus wind turbines, Renew. Energy 85: 419–435, (2016) [CrossRef] [Google Scholar]
  21. S. Zanforlin, S. Deluca, Effects of the Reynolds number and the tip losses on the optimal aspect ratio of straight-bladed Vertical Axis Wind Turbines, Energy 148: 179–195, (2018) [CrossRef] [Google Scholar]
  22. A. Vergaerde, T. De Troyer, L. Standaert, J. Kluczewska-Bordier, D. Pitance, A. Immas, F. Silvert, M.C. Runacres, Experimental validation of the power enhancement of a pair of vertical-axis wind turbines, Renewable Energy 146: 181–187, (2020) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.