Open Access
E3S Web Conf.
Volume 312, 2021
76th Italian National Congress ATI (ATI 2021)
Article Number 08013
Number of page(s) 9
Section Systems for Sustainable Energy Generation
Published online 22 October 2021
  1. A.K. Agarwal, Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog Energy Combust Sci, 33, 233–271, (2007) [Google Scholar]
  2. S.A. Basha, K.R. Gopal, S. Jebaraj, A review on biodiesel production, combustion, emissions and performance. Renew Sustain Energy Rev, 13, 1628–1634 (2009) [Google Scholar]
  3. H. Raheman, S.V. Ghadge, Performance of diesel engine with biodiesel at varying compression ratio and ignition timing, Fuel, 87, 2659–2666, (2008) [Google Scholar]
  4. J.B. Heywood, Internal Combustion Engine Fundamentals, McGraw-Hill, New York (1988) [Google Scholar]
  5. E. Galloni, G. Fontana, R. Palmaccio, Numerical analyses of EGR techniques in a turbocharged spark-ignition engine, Applied Thermal Engineering, 39, 95–104, (2012) [Google Scholar]
  6. S. Mauro, R. §ener, M.Z. Gül, R. Lanzafame, M. Messina, S. Brusca, Internal combustion engine heat release calculation using single-zone and CFD 3D numerical models, International Journal of Energy and Environmental Engineering, 9, 215–226, (2018) [Google Scholar]
  7. S. Bova, T. Castiglione, R. Piccione, F. Pizzonia, A dynamic nucleate-boiling model for CO2 reduction in internal combustion engines, Applied Energy, 143, 271–282, (2015) [Google Scholar]
  8. X. Zhen, Y. Wang, S. Xu, Y. Zhu, C. Tao, T. Xu, M. Song, The Engine Knock Analysis, Applied Energy, 9, 628–636, (2012) [Google Scholar]
  9. T. Castiglione, P. Morrone, L. Falbo, D. Perrone, S. Bova, Application of a model-based controller for improving internal combustion engines fuel economy, Energies, 13(5), 1148, (2020) [Google Scholar]
  10. A. Algieri, P. Morrone, D. Perrone, S. Bova, T. Castiglione, Analysis of multi-source energy system for small-scale domestic applications. Integration of biodiesel, solar and wind energy, Energy Reports, 6, 652–659, (2020) [Google Scholar]
  11. N. Kim, I. Ko, K. Min, Development of a zero-dimensional turbulence model for a spark ignition engine, International Journal of Engine Research, 20 (4), 441–451 (2018) [Google Scholar]
  12. S. Grasreiner. Combustion modeling for virtual SI engine calibration with the help of 0D/3D methods. Ph.D. Thesis, Technical University of Bergakademie Freiberg, Freiberg, (2012). [Google Scholar]
  13. V. De Bellis, E. Severi, S. Fontanesi and F. Bozza. Hierarchical 1D/3D approach for the development of a turbulent combustion model applied to a VVA turbocharged engine. Part I: turbulence model. Energy Procedia, 45, 829–838, (2018) [Google Scholar]
  14. A. Algieri, S. Bova, C. De Bartolo, A. Nigro, “Numerical and Experimental Analysis of the Intake Flow in a High Performance Four-Stroke Motorcycle Engine”, Journal of Engineering for Gas Turbines and Power; 129 (4), (2007) [Google Scholar]
  15. A. Algieri, S. Bova, and C. De Bartolo, “Experimental and Numerical Investigation on the Effects of the Seeding Properties on LDA Measurements,” ASME J. of Fluids Engineering, 127, 514–522, (2005) [Google Scholar]
  16. A. Algier, M. Amelio, S. Bova, P. Morrone, Energy Efficiency Analysis of Monolith and Pellet Emission Control Systems in Unidirectional and Reverse-Flow Designs, SAE International Journal of Engines, 2, 684–693, (2010) [Google Scholar]
  17. M. Zheng, Reader G.T., Energy efficiency analyses of active flow aftertreatment systems for lean burn internal combustion engines. Energy Conversion and Management, 45, 2473–2493, (2004) [Google Scholar]
  18. A. Güthenkea, D. Chatterjeea, M. Weibela, N. Waldbüßera, P. Koci, M. Marek, M. Kubicek, Development and application of a model for a NOx storage and reduction catalyst, Chemical Engineering Science 62, 5357–5363, (2007) [Google Scholar]
  19. C.D. Rakopoulos, D.C. Rakopoulos, E.G. Giakoumis, D.C. Kyritsis, Validation and sensitivity analysis of a two zone Diesel engine model for combustion and emissions prediction, Energy Conversion and Management, 45, 14711495, (2004) [Google Scholar]
  20. J. Galindo, J.M. Lujan, J.R. Serrano, V. Dolz, S. Guilain, Description of a heat transfer model suitable to calculate transient processes of turbocharged diesel engines with one-dimensional gas-dynamic codes, Applied Thermal Engineering, 26, 66–76, (2006) [Google Scholar]
  21. B. Jayashankara, V. Ganesan, Effect of fuel injection timing and intake pressure on the performance of a DI diesel engine - A parametric study using CFD, Energy Conversion and Management, 51, 1835–1848, (2010) [Google Scholar]
  22. P. Morrone, A. Algieri, T. Castiglione, D. Perrone, S. Bova, Investigation of the energy performance of multi-source integrated CHP systems for small-scale applications, AIP conference Proceedings, 2191, 020115, (2019) [Google Scholar]
  23. N. Abbe, V. Claude, R. Nzengwa, R. Danwe, Z.M. Ayissi, M. Obobou, A study on the 0D phenomenological model for diesel engine simulation: Application to combustion of Neem methyl esther biodiesel, Energy Conversion and Management, 89, 568–576, (2015) [Google Scholar]
  24. T.K. Gogoi, D.C. Baruah, A cycle simulation model for predicting the performance of a diesel engine fuelled by diesel and biodiesel blends, Energy, 35, 1317–1323, (2010) [Google Scholar]
  25. A.S. Ramadhas, S. Jayaraj, C. Muraleedharan, Theoretical modeling and experimental studies on biodiesel-fueled engine, Renewable Energy, 31, 1813–1826, (2006) [Google Scholar]
  26. D.H. Qi, H. Chen, L.M. Geng, Y.Z.H. Bian, Combustion Experimental studies on the combustion characteristics and performance of a direct injection engine fuelled with biodiesel/diesel blends, Energy Conversion and Management, 51, 2985–2992, (2010) [Google Scholar]
  27. D. Perrone, A. Algieri, P. Morrone, T. Castiglione, Energy and Economic Investigation of a Biodiesel-Fired Engine for Micro-Scale Cogeneration, Energies, 14 (2), Article 496, (2021) [Google Scholar]
  28. H.O. Hardenberg, F.W. Hase, An Empirical Formula for Computing the Pressure Rise Delay of a Fuel from Its Cetane Number and from the Relevant Parameters of Direct-Injection Diesel Engines, SAE paper 790493, SAE Trans., 88, (1979) [Google Scholar]
  29. S. Awad, E.G. Varuvel, K. Loubar, M. Tazerout, Single Zone Combustion Modeling of Biodiesel from Wastes in Diesel Engine, Fuel, 106, 558–568, (2013) [Google Scholar]
  30. W.J.D. Annand, Heat Transfer in the Cylinders of Reciprocating Internal Combustion Engines, Proc. Instn Mech. Engrs, 177 (36), 973–990, (1963) [Google Scholar]
  31. J.Y. Wu, J.L. Wang, S. Li, R.Z. Wang, Experimental and Simulative Investigation of a Micro-CCHP (Micro Combined Cooling, Heating and Power) System with Thermal Management Controller. Energy, 68, 444–453, (2014) [Google Scholar]
  32. M. Gumus, A comprehensive experimental investigation of combustion and heat release characteristics of a biodiesel (hazelnut kernel oil methyl ester) fuelled direct injection compression ignition engine, Fuel, 9, 2802–2814, (2010) [Google Scholar]
  33. E. Ozturk, Performance, emissions, combustion and injection characteristics of a diesel engine fuelled with canola oil-hazelnut soapstock biodiesel mixture, Fuel Processing Technology, 129, 183–191, (2015) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.