Open Access
Issue
E3S Web Conf.
Volume 312, 2021
76th Italian National Congress ATI (ATI 2021)
Article Number 08015
Number of page(s) 16
Section Systems for Sustainable Energy Generation
DOI https://doi.org/10.1051/e3sconf/202131208015
Published online 22 October 2021
  1. Götz, M., Lefebvre, J., Mörs, F., McDaniel, Koch A., Graf, F., Bajohr, S., et al. Renewable Power-to-Gas: A technological and economic review. Renew Energy 2016;85:1371- 90. https://doi.org/10.1016/j.renene.2015.07.066. [CrossRef] [Google Scholar]
  2. Lee W.J., Li C., Prajitno H., Yoo J., Patel J., Yang Y., et al. Recent trend in thermal catalytic low temperature CO2 methanation: A critical review. Catal Today 2020. https://doi.org/10.1016/j.cattod.2020.02.017. [Google Scholar]
  3. Ghaib K., Ben-Fares F.Z. Power-to-Methane: A state-of-the-art review. Renew Sustain Energy Rev 2018;81:433–446. https://doi.org/10.1016/j.rser.2017.08.004. [CrossRef] [Google Scholar]
  4. Hanzehogeschool Groningen-University of Applied Sciences. Power to Methane: State-of-the art and future prospects of biological power-to-methane (BioP2M) approaches. 2017. [Google Scholar]
  5. Hidalgo D., Martin-Marroquin J.M. Power-to-methane, coupling CO2 capture with fuel production: An overview. Renew Sustain Energy Rev 2020;132. https://doi.org/10.1016/j.rser.2020.110057. [Google Scholar]
  6. Audi e-gas - Audi Technology Portal n.d. https://www.audi-technology-portal.de/en/mobility-for-the-future/audi-future-lab-mobility_en/audi-e-gas_en (accessed April 27, 2021). [Google Scholar]
  7. P2G-BioCat n.d. http://biocat-project.com/ (accessed April 27, 2021). [Google Scholar]
  8. Electrochaea GmbH - Power-to-Gas Energy Storage via Biological Catalysis - Electrochaea GmbH - Power-to-Gas Energy Storage n.d. http://www.electrochaea.com/. [Google Scholar]
  9. Ich Ngo S., Lim YIl, Lee, D., Won Seo, M., Kim, S. Experiment and numerical analysis of catalytic CO2 methanation in bubbling fluidized bed reactor. Energy Convers Manag 2021;233:113863. https://doi.org/10.1016/j.enconman.2021.113863. [CrossRef] [Google Scholar]
  10. Scano E.A., Grosso M., Pistis A., Carboni G., Cocco D. An in-depth analysis of sustainable biomethane production from agro-industrial by-products and residues at a local scale 2021. [Google Scholar]
  11. Adnan A.I., Ong M.Y., Nomanbhay S., Chew K.W., Show P.L. Technologies for biogas upgrading to biomethane: A review. Bioengineering 2019;6:1–23. https://doi.org/10.3390/bioengineering6040092. [CrossRef] [Google Scholar]
  12. Kapoor R., Ghosh P., Kumar M., Vijay V.K. Evaluation of biogas upgrading technologies and future perspectives: a review. Environ Sci Pollut Res 2019:1163161. https://doi.org/10.1007/s11356-019-04767-1. [Google Scholar]
  13. Campanari S., Colbertaldo P., Guandalini G. Renewable Power to Hydrogen, Innovation landscape brief. 2020. [Google Scholar]
  14. Schmidt O., Gambhir A., Staffell I., Hawkes A., Nelson J., Few S. Future cost and performance of water electrolysis : An expert elicitation study. Int J Hydrogen Energy 2017;42:30470–92. https://doi.org/10.1016/j.ijhydene.2017.10.045. [CrossRef] [Google Scholar]
  15. Ursua A., Sanchis P. Static-dynamic modelling of the electrical behaviour of a commercial advanced alkaline water electrolyser. Int J Hydrogen Energy 2012;37:18598–614. https://doi.org/10.1016/j.ijhydene.2012.09.125. [CrossRef] [Google Scholar]
  16. SHARP. SHARP PV module: NU-JC Series 330 W n.d. [Google Scholar]
  17. Cocco D., Palomba C., Puddu P. Tecnologie delle energie rinnovabili. 2010. [Google Scholar]
  18. Valli C., Cavaliere A., Ferravante L. Un approfondimento sulla metanazione biologica per l ’ upgrading del biogas a biometano: fattibilità tecnico-economica e possibile ruolo nella gestione delle rinnovabili non programmabili. 2018. [Google Scholar]
  19. Lecker B., Illi L., Lemmer A., Oechsner H. Biological hydrogen methanation - A review. Bioresour Technol 2017;245:1220–1228. https://doi.org/10.1016/j.biortech.2017.08.176. [CrossRef] [PubMed] [Google Scholar]
  20. Manuel Götz, Friedemann Mörs, Katharina Bär, Amy McDaniel Koch, F.G. Comparison of Biological and Catalytic Methanation for Power-to-Gas Applications. 2015. [Google Scholar]
  21. Thema M., Weidlich T., Hörl M., Bellack A., Mörs F., Hackl F., et al. Biological CO2- methanation: An approach to standardization. Energies 2019;12. https://doi.org/10.3390/en12091670. [Google Scholar]
  22. Voelklein M.A., Rusmanis D., Murphy J.D. Biological methanation: Strategies for insitu and ex-situ upgrading in anaerobic digestion. Appl Energy 2019;235:1061–1071. https://doi.org/10.1016/j.apenergy.2018.11.006. [CrossRef] [Google Scholar]
  23. IRENA. Green Hydrogen Cost Reduction: Scaling up Electrolysers to Meet the 1.50C Climate Goal. 2020. [Google Scholar]
  24. DOE Hydrogen and Fuel Cells Program. 2020. https://doi.org/https://www.hydrogen.energy.gov/annual_progress19.html. [Google Scholar]
  25. Vo TTQ, Wall D.M., Ring D., Rajendran K., Murphy, J.D. Techno-economic analysis of biogas upgrading via amine scrubber, carbon capture and ex-situ methanation. Appl Energy 2018;212:1191–1202. https://doi.org/10.1016/j.apenergy.2017.12.099. [CrossRef] [Google Scholar]
  26. Michailos S., Walker M., Moody A., Poggio D., Pourkashanian M. A techno-economic assessment of implementing power-to-gas systems based on biomethanation in an operating waste water treatment plant. J Environ Chem Eng 2021;9:104735. https://doi.org/10.1016/jjece.2020.104735. [CrossRef] [Google Scholar]
  27. Serra F., Lucariello M., Petrollese M., Cau G. Optimal integration of hydrogen-based energy storage systems in photovoltaic microgrids: A techno-economic assessment. Energies 2020;13. https://doi.org/10.3390/en13164149. [Google Scholar]
  28. Verbeeck K., Buelens L.C., Galvita V V., Marin G.B., Van Geem K.M., Rabaey, K. Upgrading the value of anaerobic digestion via chemical production from grid injected biomethane. Energy Environ Sci 2018;11:1788–1802. https://doi.org/10.1039/c8ee01059e. [CrossRef] [Google Scholar]
  29. Pasini G., Baccioli A., Ferrari L., Antonelli M., Frigo S., Desideri U. Biomethane grid injection or biomethane liquefaction: A technical-economic analysis. Biomass and Bioenergy 2019;127:105264. https://doi.org/10.1016/j.biombioe.2019.105264. [CrossRef] [Google Scholar]
  30. Spooftuomi, K. Techno-economic analysis of biomethane liquefaction processes. 2020. [Google Scholar]
  31. Saur G., Jalalzadeh-azar A. H2A Biomethane Model Documentation and a Case Study for Biogas From Dairy Farms. 2010. [Google Scholar]
  32. SnAm - Tariffe di trasporto 2021 n.d. [Google Scholar]
  33. RSE. Studio RSE: Approvvigionamento energetico della Regione Sardegna (anni 2020-2040) ai sensi della del. 335/2019/R/GAS del 30 luglio 2019. 2020. [Google Scholar]
  34. Sardegna D.R., Sfruttamento D., Risorse D., Alla F., Di R., Bioenergie I.A., et al. PIANO ENERGETICO AMBIENTALE 2020. [Google Scholar]
  35. Regione Autonoma della Sardegna - Assessorato dell’Industria. Piano energetico ed ambientale della Regione Sardegna 2015-2030 - Proposta tecnica. 2015. [Google Scholar]
  36. Regione Autonoma della Sardegna - Assessorato dell’Industria. Documento di indirizzo sulle fonti energetiche rinnovabili in Sardegna - Studio sulle potenzialità energetiche delle biomasse. 2013. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.