Open Access
E3S Web Conf.
Volume 312, 2021
76th Italian National Congress ATI (ATI 2021)
Article Number 12008
Number of page(s) 12
Section Environmental Sustainability and IAQ
Published online 22 October 2021
  1. Sharif-Askari, H., Abu-Hijleh, B. Review of museums’ indoor environment conditions studies and guidelines and their impact on the museums’ artifacts and energy consumption (Article), Building and Environment, Volume 143, 1 October 2018, Pages 186–195 [Google Scholar]
  2. Lanteri, L., Pelosi, C., Monaco, A.L., The relevance of monitoring the microclime in museums the case of colle del Duomo in Viterbo, European Journal of Science and Theology, Volume 16, Issue 4, 2020, Pages 181–191 [Google Scholar]
  3. M. La Gennusa, F. Nicoletti, G. Rizzo, G. Scaccianoce (2005), “Control of indoor environments in heritage buildings: experimental measurements in an old Italian museum and proposal of a methodology”, Journal of Cultural Heritage, 6, 147–155. [Google Scholar]
  4. ISO 11799 (2003), Information and documentation - Document storage requirements for archive and library materials, International Organization for Standardization, Geneva. [Google Scholar]
  5. ASHRAE Handbook-HVAC Applications. Chapter 23: Museums, Galleries, Archives, and Libraries (2011). American Society of Heating, Refrigerating and AirConditioning Engineers Inc. [Google Scholar]
  6. EN 15757:2010 (2010), Conservation of Cultural Property - Specifications for temperature and relative humidity to limit climate-induced mechanical damage in organic hygroscopic materials. [Google Scholar]
  7. UNI 10829:1999 (1999), Artefacts of historical and artistic importance - Conservation environmental conditions - Measurement and analysis (Beni di interesse storico e artistico - Condizioni ambientali di conservazione - Misurazione ed analisi) UNI - Ente Italiano di Unificazione, Milano. [Google Scholar]
  8. Wu, P. Make a loyal visitor: a study of leisure experience at Farglory corporate museum in Taiwan, Asia Pacific Journal of Tourism Research, Volume 22, Issue 5, 4 May 2017, Pages 554–564 [Google Scholar]
  9. Schito, E., Conti, P., Testi, D., Multi-objective optimization of microclimate in museums for concurrent reduction of energy needs, visitors’ discomfort and artwork preservation risks, Applied Energy, Volume 224, 15 August 2018, Pages 147–159 [Google Scholar]
  10. Martinez-Molina, P. Boarin, I. Tort-Ausina, J.L. Vivancos (2018), “Assessing visitors' thermal comfort in historic museum buildings: Results from a Post-Occupancy Evaluation on a case study”, Building and Environment, 132, 291–302 [Google Scholar]
  11. Ferdyn-Grygierek, J., Monitoring of indoor air parameters in large museum exhibition halls with and without air-conditioning systems, Building and Environment Volume 107, 1 October 2016, Pages 113–126 [Google Scholar]
  12. M. La Gennusa, G. Rizzo, G. Rodono, G. Scaccianoce (2009), “People comfort and artwork saving in museums: comparing indoor requisites”, Int. J. Sustainable Design, 1 (2), 199–222. [Google Scholar]
  13. M. La Gennusa, G. Lascari, G. Rizzo, G. Scaccianoce (2008), “Conflicting needs of the thermal indoor environment of museums: In search of a practical compromise”, Journal of Cultural Heritage, 9 (2), 125–134. [Google Scholar]
  14. L. Cartechini, S. Castellini, B. Moroni Palmieri, F. Scardazza, B. Sebastiani, R. Selvaggi, M. Vagnini, G.L. Delogu, B.G. Brunetti, D. Cappelletti (2015), “Acute episode of black carbon and aerosol contamination in a museum environment: Results of integrated real-time and off-line measurements”, Atmospheric Environment, 116, 130–137. [Google Scholar]
  15. T. Grontoft, D. Thickett, P. Lankester, S. Hackney, J.H. Townsend, K. Ramsholt, M. Garrido (2016), “Assessment of indoor air quality and the risk of damage to cultural heritage objects using MEMORI® dosimetry”, Studies in Conservation, 61:sup1,70–82. [Google Scholar]
  16. Cavicchioli, C.A. Neves, R. Inhasz Pavia, D.L. Araùjo de Faria (2014), “An upgraded automatic piezoelectric quartz crystal dosimeter for environmental monitoring in indoor cultural heritage conservation areas”, Sensors and Actuators B, 190, 1014–1023. [Google Scholar]
  17. M. Dubus, M. Kouril, T.P. Nguyen, T. Prosek, M. Saheb, J. Tate (2010), “Monitoring Copper and Silver Corrosion in Different Museum Environments by Electrical Resistance Measurement”, Studies in Conservation, 55:2, 121–133. [Google Scholar]
  18. T. Prosek, M. Kouril, M. Dubus, M. Taube, V. Hubert, B. Scheffel, Y. Degres, M. Jouannic, D. Thierry (2013), “Real-time monitoring of indoor air corrosivity in cultural heritage institutions with metallic electrical resistance sensors”, Studies in Conservation, 58:2, 117–128. [Google Scholar]
  19. Li, Z., Wang, Z., Khan, J., Lagasse, M.K., Suslick, K.S., Ultrasensitive Monitoring of Museum Airborne Pollutants Using a Silver Nanoparticle Sensor Array, ACS Sensors, Volume 5, Issue 9, 25 September 2020, Pages 2783–2791 [Google Scholar]
  20. Perles E.P. Rez-Marn, R. Mercado, J. Damian Segrelles, I. Blanquer, M. Zarzo, F.J. Garcia-Diego (2018), “An energy-efficient internet of things (IoT) architecture for preventive conservation of cultural heritage”, Future Generation Computer Systems, 81, 556–581. [Google Scholar]
  21. D. Ibaseta, J. Molleda, F. Diez, J.C. Granada (2019), “An IOT Platform for Indoor Air Quality Monitoring Using the Web Of Things”, Transactions on Ecology and the Environment, 236, WIT Press,, ISSN 1743-3541. [Google Scholar]
  22. M. Gaudenzi Asinelli, M.S. Serra, J.M. Marimon, J.S. Espaulella (2018), “The smARTS_Museum_V1: an open hardware device for remote monitoring of Cultural Heritage indoor environments”, HardwareX. [Google Scholar]
  23. P. Rea, A. Pelliccio, E. Ottaviano, M. Saccucci (2017), “The Heritage Management and Preservation Using the Mechatronic Survey”, International Journal of Architectural Heritage, 11:8, 1121–1132. [Google Scholar]
  24. D. Ladiana, M. Di Sivo (2019), “Programmed Conservation of Historical and Architectural heritage. Tools for Optimising a Process Based on Knowledge and Information”, Int. J. of Design & Nature and Ecodynamics, 14 (3), pp. 229–240. [Google Scholar]
  25. Dario Camuffo, Microclimate for Cultural Heritage (2013), Elsevier. [Google Scholar]
  26. E. Sacchi (1998), “Il monitoraggio reattivo della qualità dell’aria negli ambienti museali (Parte Prima)”, La Termotecnica, Ottobre-Novembre 1998, 89–96. [Google Scholar]
  27. ISA-S71.04 (1985), “Environmental Conditions for Process Measurement and Control Systems: Airborne Contaminants”, Instrument Society of America, Research Triangle Park, North Carolina (USA). [Google Scholar]
  28. PURAFIL INC. (1993), “Environmental Control for Museums, Libraries and Archival Storage Areas”, Technical Brochure 600 and latest edition 600A, Atlanta, Georgia (USA). [Google Scholar]
  29. PURAFIL INC. (2018), “Product bulletin corrosion classification coupon” - • © Purafil 2018 ProdBltn - CCC-4. [Google Scholar]
  30. F. Guidobaldi, E. Petrucci, Romanelli, G. Schirripa Spagnolo, F. De Santis, T. Valente (1995), “Nuovi sensori per la valutazione di indici di rischio per i monumenti in marmo esposti all’aperto”, Proceeding of 1st International Congress on Science and Technology for the Safeguard of Cultural Heritage in the Mediterranean Basin, Catania-Siracusa, Italy. [Google Scholar]
  31. D.W. Nishimura, Understanding Preservation Metrics (2011), Image Permanence Institute, Rochester Institute of Technology ( [Google Scholar]
  32. W.T. Simpson, Equilibrium Moisture Content of Wood in Outdoor Locations in the United States and Worldwide (1998), Research Note FPL-RN-0268, United States Department of Agriculture. [Google Scholar]
  33. L. Cirrincione, A. Nucara, G. Peri, G. Rizzo, G. Scaccianoce (2020), “Two operative risk indicators as tools for negotiating contracts between curators of Museums and HVAC technical services providers”, Journal of Cultural Heritage, 41, 200–210. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.