Open Access
E3S Web Conf.
Volume 313, 2021
19th International Stirling Engine Conference (ISEC 2021)
Article Number 01001
Number of page(s) 13
Section Co-Generation Systems: Micro-CHP
Published online 22 October 2021
  1. T. W. Steiner, G. D. S. Archibald, “A high pressure and high frequency diaphragm engine: Comparison of measured results with thermoacoustic predictions, ” Appl. Energy 114 (2014) 709-716. [Google Scholar]
  2. T. Steiner, B. De Chardon, “Evolution of a diaphragm beta Stirling engine into a displacer-less thermoacoustic design, ” Proceedings of the 17th International Stirling Engine Conference, Northumbria University Newcastle UK, (2016), pp. 253-262. [Google Scholar]
  3. R. S. Wakeland, “Use of electrodynamic drivers in thermoacoustic refrigerators, ” J. Acoust. Soc. Am. 107, 827–832 (2000). [Google Scholar]
  4. T. W. Steiner, K. B. Antonelli, G. D. S. Archibald, B. De Chardon, K. T. Gottfried, M. Malekian, P. Kostka, “A high frequency, power, and efficiency diaphragm acoustic-toelectric transducer for thermoacoustic engines and refrigerators, ” J. Acoust. Soc. Am. 149 (2021) 948-959. doi: [Google Scholar]
  5. M. E. H. Tijani, S. Spoelstra, A hot air driven thermoacoustic-Stirling engine, Appl. Therm. Eng. 61 (2013) 866-870. [Google Scholar]
  6. T. Bi, Z. Wu, L. Zhang, G. Yu, E. Luo, W. Dai, Development of a 5 kW travelingwave thermoacoustic electric generator, Appl. Energy 185 (2017) 1355-1361. [Google Scholar]
  7. C. Iniesta, J. L. Olazagoitia, J. Vinolas, J. Aranceta, “Review of traveling-wave thermoacoustic electric-generator technology, ” J. Power and Energy 232(7) (2018) 940-957. doi: [Google Scholar]
  8. B. Medard de Chardon, T. W. Steiner, “Apparatus for performing energy transformation between thermal energy and acoustic energy, ” US patent 10, 823, 110 (2020). [Google Scholar]
  9. T. W. Steiner, M. P. Hoy, G. D. S. Archibald, K. T. Gottfried, T. Kanemaru, B. Medard de Chardon, “Apparatus and system for exchanging heat with a fluid, ” US patent 10, 890, 385 (2021). [Google Scholar]
  10. T. W. Steiner, G. D. S. Archibald, T. J. Henthorne, M. P. Hoy, T. Kanemaru, “Thermal regenerator apparatus, ” US provisional patent application 62825592 (2019). [Google Scholar]
  11. G. W. Swift, Thermoacoustics A Unifying Perspective for Some Engines and Refrigerators, 2nd Edition, ASA Press/Springer, Cham, Switzerland, (2017). [Google Scholar]
  12. B. Ward, J. Clark, G. Swift, DeltaEC users guide, (2019) [Google Scholar]
  13. J. R. Olson, G. W. Swift, “Acoustic streaming in pulse tube refrigerators: tapered pulse tubes, ” Cryogenics 37 (1997) 769-776. [Google Scholar]
  14. M. A. G. Timmer, K. de Blok, and T. H. van der Meer, “Review on the conversion of thermoacoustic power into electricity, ” J. Acoust. Soc. Am. 143, 841–857 (2018). [Google Scholar]
  15. T. W. Steiner, M. Hoy, K. B. Antonelli, M. Malekian, G. D. S. Archibald, T. Kanemaru, W. Aitchison, B. De Chardon, K. T. Gottfried, M. Elferink, T. Henthorne, B. O’Rourke, and P. Kostka, “High-efficiency natural gas fired 1 kWe thermoacoustic engine, ” Accepted for publication, Appl. Therm. Eng., (2021). doi: [Google Scholar]
  16. M. Raefsky, “Fatigue properties of 17-4 PH and 15-5 PH steel in the H-900 and H1050 condition” (1968),, Boeing Vertol Co. Philadelphia PA. [Google Scholar]
  17. C. Bathias, P. C. Paris, Gigacycle Fatigue in Mechanical Practice, Marcel Dekker New York, (2005) [Google Scholar]
  18. M. Elferink, T. Steiner, “Thermoacoustic waste heat recovery engine. Comparison of simulation and experiment, ” Proc. Mtgs. Acoust. 35 (2018) 955 065002. doi: [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.