Open Access
Issue
E3S Web Conf.
Volume 314, 2021
The 6th edition of the International Conference on GIS and Applied Computing for Water Resources (WMAD21)
Article Number 03008
Number of page(s) 4
Section Climate Change & Natural Hazard Related to Water
DOI https://doi.org/10.1051/e3sconf/202131403008
Published online 26 October 2021
  1. J. Yoshida, K. Udo, Y. Takeda, A. Mano. Framework for proper beach nourishment as adaptation to beach erosion due to sea level rise, Proceedings 13th International Coastal Symposium (Durban, South Africa), J.C.R., (2014) [Google Scholar]
  2. A. Kwarteng, Y. Illenberger, W. K. Mclachlan, A. Sana. Beach erosion along Al Batinah coast, Sultanate of Oman, https://doi.org/10.1007/s12517015-2186-8, (2016) [Google Scholar]
  3. J.R Hsu, C. Benedet, L. Klein, A.H.F Raabe. Appreciation of static bay beach concept for coastal management and protection. J.C.R. 24, 1 (2008) [Google Scholar]
  4. E. Bird and N. Lewis. Beach Renourishment. Dordrecht, The Netherlands: Springer, 135p. Paperback with color illustrations, ISBN: 978-3-319-09727-5, (2015) [Google Scholar]
  5. M. Gonzalez-Leija, I. Marino-Tapia, R. Silva, C. Enriquez, E. Mendoza. Morphodynamic evolution and sediment transport processes of Cancun Beach. J.C.R. 29, 5 (2013) [Google Scholar]
  6. M. Snoussi. Impacts of sea-level rise on the Moroccan coastal zone : Quantifying coastal erosion and flooding in the Tangier Bay. https://doi.org/10.1016/j.geomorph.2006.07.043, (2009) [Google Scholar]
  7. Bruun. (1962). Sea Level Rise as a Cause if Shore Erosion. Journal of Waterways and Harbors Division (ASCE) 1:116-130. [Google Scholar]
  8. H. Azidane. Les risques d’érosion et de submersion côtiers du littoral de Kenitra Bouknadel : Mesures et modélisation. Thèse de doctorat, Université Ibn Tofail, Faculté des sciences, 164–165, (2019) [Google Scholar]
  9. A. Benmohammadi, R. Griboulard, B. Zourarah. Hyperactive neotectonic near the South Rifian frontlifted late Quaternary lagunal deposit (Atlantic Morocco), Comptes Rendus Geosciences, 339, pp. 831-839, (2009) [Google Scholar]
  10. J. Moussaid, A. fora, B. Zourarah, and M. Maanan. Using automatic computation to analyze the rate of shoreline change on the Kenitra coast, Morocco. Ocean Engineering, 102, 71–77, (2015) [Google Scholar]
  11. M. Idrissi, M. Ait Laamel, A. Hourimeche, M. Chagdali. Impact of the swell on the current morphological and sedimentary evolution of the coastal zone of CasablancaMohammedia (Morocco), J. Afr. Earth Sci. 39, (2004) [Google Scholar]
  12. DPDPM. Etude d’expertise sédimentologique de la plage de Mehdia (Maroc). Rapport final, n°1712781, 81 p, (2011) [Google Scholar]
  13. M.E Hereher. Assessment of South Sinai coastal vulnerability to climate change. J. C. R. 31, 6 (2015) [Google Scholar]
  14. IPCC. Fifth Assessment Report (AR5). Climate Change 2014: Mitigation of Climate Change Intergovernmental Panel on Climate Change. (2014) [Google Scholar]
  15. R.J. Hallermeier. A profile zonation for seasonal sand beaches from wave climate. C. E. J., 4 (1981) [Google Scholar]
  16. M. Hakkou, and B. Castelle. Wave climate and morphosedimentary characteristics of the Kenitra – Bouknadel sandy coast, Morocco. (2011) [Google Scholar]
  17. R.G. Dean. Beach Nourishment: Theory and Practice. World Scientific Publishing, 390 p. (2002) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.