Open Access
Issue
E3S Web Conf.
Volume 314, 2021
The 6th edition of the International Conference on GIS and Applied Computing for Water Resources (WMAD21)
Article Number 06003
Number of page(s) 4
Section Integrated Water Resources Management
DOI https://doi.org/10.1051/e3sconf/202131406003
Published online 26 October 2021
  1. F. X. Diebold, « On the Origin(s) of the Term “Big Data” », arXiv:2008.05835 [cs, econ], août 2020, Consulté le: août 31, 2020. [Google Scholar]
  2. S. Lohr, « The Origins of “Big Data”: An Etymological Detective Story », Bits Blog, févr. 01, 2013. [Google Scholar]
  3. D. Laney, « 3D Data Management: Controlling Data Volume, Velocity, and Variety », 2001 [Google Scholar]
  4. OECD Observer, « Big data, satellites and climate change », 2016. [Google Scholar]
  5. A. MOUMEN, « Contribution d’une approche participative et des infrastructures de données spatiales pour la conception d’un système régional d’information sur l’eau, étude de cas au bassin Guir-Ziz-Rheris et Maider », Université Ibn Tofail, 2016 [Google Scholar]
  6. J. Elhassan, M. Aniss, et C. Jamal, « Big Data Analytic Architecture for Water Resources Management: A Systematic Review », in Proceedings of the 4th Edition of International Conference on Geo-IT and Water Resources 2020, Geo-IT and Water Resources 2020, New York, NY, USA, mars 2020, doi: 10.1145/3399205.3399225. [Google Scholar]
  7. Davis FD. A technology acceptance model for empirically testing new end-user information systems: theory and results. Cambridge: Massachusetts Institute of Technology; 1985. [Google Scholar]
  8. Khan HU, Awan MA. Possible factors affecting internet addiction: a case study of higher education students of Qatar. Int J Bus Inf Syst (IJBIS), Forthcom. 2017. [Google Scholar]
  9. Fishbein M. A theory of reasoned action: some applications and implications; 1979. [Google Scholar]
  10. Ajzen I. From intentions to actions: a theory of planned behavior. Berlin: Springer; 1985. [Google Scholar]
  11. Davis FD. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 1989;13(3):319–40. [Google Scholar]
  12. K. W. K. Soon, C. A. Lee, and P. Boursier, ‘A study of the determinants affecting adoption of big data using integrated Technology Acceptance Model (TAM) and diffusion of innovation (DOI) in Malaysia’, Int. J. Appl. Bus. Econ. Res., vol. 14, no. 1 pp. 17–47, 2016. [Google Scholar]
  13. V. Brock and H. U. Khan, ‘Big data analytics: does organizational factor matters impact technology acceptance?’, J. Big Data, vol. 4, no. 1 pp. 1–28, 2017 [Google Scholar]
  14. S. Verma, S. S. Bhattacharyya, and S. Kumar, ‘An extension of the technology acceptance model in the big data analytics system implementation environment’, Inf. Process. Manag., vol. 54, no. 5 pp. 791–806, 2018. [Google Scholar]
  15. S. Okcu, G. H. Koksalmis, E. Basak, and F. Calisir, ‘Factors affecting intention to use big data tools: an extended technology acceptance model’, in Industrial Engineering in the Big Data Era, Springer, 2019, pp. 401–416. [Google Scholar]
  16. J. Hicham, M. Aniss, et M. Bouabid, « Moroccan Water Information System: Exploratory study System Literature Review », in Proceedings of the 4th Edition of International Conference on Geo-IT and Water Resources 2020, Geo-IT and Water Resources 2020, New York, NY, USA, mars 2020, doi: 10.1145/3399205.3399226. [Google Scholar]
  17. MDE, ‘Royal Decree No 1-95154 Law on Water’. 1995. Accessed: Oct. 15, 2021. [Online]. Available: http://gis.nacse.org/rewab/docs/Royal_Decree_No_1-95-154_Promulgating_Law_on_Water_EN.pdf [Google Scholar]
  18. F. Belamari, ‘Gestion de l’Eau au Maroc dans un système complexe et incertain’, 2008. [Google Scholar]
  19. A. Moumen, 2020, “Adoption of Big data, Cloud Computing & IoT in Morocco perception of public administrations collaborators”, in Proceedings of the 4th Edition of International Conference on Geo-IT and Water Resources 2020, Geo-IT and Water Resources 2020, New York, NY, USA, mars 2020, https://doi.org/10.1145/3399205.3399228 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.