Open Access
Issue
E3S Web Conf.
Volume 319, 2021
International Congress on Health Vigilance (VIGISAN 2021)
Article Number 01037
Number of page(s) 5
DOI https://doi.org/10.1051/e3sconf/202131901037
Published online 09 November 2021
  1. Patrick Bensabat, Didier Gaultier, Michael Hoarau, Bruno Laug et Yann Gourvenec, Livre Blanc du Big Data au Big Business, 2014 [Google Scholar]
  2. Alexander Pak, Patrick Paroubek, Twitter as a Corpus for Sentiment Analysis and Opinion Mining, Janvier 2010 [Google Scholar]
  3. Arti Buche, Dr. M. B. Chandak and Akshay Zadgaonkar, “Opinion mining and analysis :a survey”, International Journal on Natural Language Computing, India 2013. [Google Scholar]
  4. Bilal Saberi, Saidah Saad, Sentiment Analysis or Opinion Mining: A Review, 2017 [Google Scholar]
  5. Kushal Dave, Steve Lawrence, David M. Pennock, Mining the Peanut Gallery: Opinion Extraction and Semantic Classification of Product Reviews, 2003 [Google Scholar]
  6. Bo Pang and Lillian Lee, Opinion Mining and Sentiment Analysis, 2008 [CrossRef] [Google Scholar]
  7. Gautami Tripathi and Naganna, Opinion Mining: A Review, 2014 [Google Scholar]
  8. Ha Huy Cuong Nguyen, Opinion Mining: Using Machine Learning Techniques, 2018 [Google Scholar]
  9. Abdeljalil Elouardighi, Mouhsine Hafdalla Hammia, Fatima Zahra aazi, Analyse des sentiments à partir des commentaires Facebook publiés en Arabe standard ou dialectal marocain par une approche d’AA [Google Scholar]
  10. Repustate Data in sight, Top Sources Of Sentiment Analysis Datasets [Google Scholar]
  11. Khalid Ait Hadi, Abdellatif El Abderahmani, Rafik Lasri, Big data analytics : valorisation et intelligence des mégadonnées pour l’aide à la prise des décisions économiques, sociales et politiques,2021 [Google Scholar]
  12. Pang, B., L. Lee, et al. (2008). Opinion mining and sentiment analysis. Foundations and Trends R in Information Retrieval 2(1–2), 1–135 [CrossRef] [Google Scholar]
  13. Dudoit, S., J. Fridlyand, et T. P. Speed (2002). Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of the American statistical association 97(457), 77–87. [CrossRef] [Google Scholar]
  14. Sehgal, M. S. B., I. Gondal, et L. Dooley (2006). Missing value imputation framework for microarray significant gene selection and class prediction. In International Workshop on Data Mining for Biomedical Applications, pp. 131–142. Springer. [CrossRef] [Google Scholar]
  15. Ha Huy Cuong Nguyen, Opinion Mining: Using Machine Learning Techniques, 2018 [Google Scholar]
  16. Imane El Alaoui, et all, Transformation des bigs social data en prévisins-méthodes et techniques-,Application à l’analyse des sentiments, Juillet 2018 [Google Scholar]
  17. Grzegorz Dziczkowski et all, Analyse des sentiments: système autonome d’exploration des opinions exprimées dans les critiques cinématographiques, 2008 [Google Scholar]
  18. Younes Benzaki, et all, Machine learning made easy, 2018 [Google Scholar]
  19. Support vectors machine, Data analysis post [Google Scholar]
  20. Support Vector Machine Algorithm, Java T Point [Google Scholar]
  21. Bing Liu, Sentiment Analysis and Opinion Mining, 2012 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.