Open Access
Issue
E3S Web Conf.
Volume 319, 2021
International Congress on Health Vigilance (VIGISAN 2021)
Article Number 01089
Number of page(s) 5
DOI https://doi.org/10.1051/e3sconf/202131901089
Published online 09 November 2021
  1. Maladie Covid-19 (nouveau coronavirus). Institut Pasteur https://www.pasteur.fr/fr/centre-medical/fiches-maladies/maladie-covid-19-nouveau-coronavirus (2020). [Google Scholar]
  2. World Health Organization. Coronavirus. https://www.who.int/westernpacific/health-topics/coronavirus (2019). [Google Scholar]
  3. WHO announces COVID-19 outbreak a pandemic. https://www.euro.who.int/en/health-topics/health-emergencies/coronavirus-covid-19/news/news/2020/3/who-announces-covid-19-outbreak-a-pandemic (2020). [Google Scholar]
  4. Coronavirus COVID-19 Virus Pandemic - Worldometer. https://www.worldometers.info/coronavirus/ (2020). [Google Scholar]
  5. Kwee, T. C. & Kwee, R. M. Chest CT in COVID-19: What the Radiologist Needs to Know. RadioGraphics 40, 1848–1865 (2020). [Google Scholar]
  6. Buzug, T. M.. Computed Tomography. in Springer Handbook of Medical Technology (eds. Kramme, R., Hoffmann, K.-P. & Pozos, R. S.) 311–342 (Springer, 2011). doi:10.1007/978-3-540-74658-4_16. [Google Scholar]
  7. Dwivedi, Y. K.. et al. Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. Int. J. Inf. Manag. 57, (2021). [Google Scholar]
  8. Ghansiyal, A., Mittal, M. & Kar, A. K.. Information management challenges in autonomous vehicles: A systematic literature review. J. Cases Inf. Technol. 23, 58–77 (2021). [Google Scholar]
  9. Pesapane, F., Codari, M. & Sardanelli, F. Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicine. Eur. Radiol. Exp. 2, 35 (2018). [Google Scholar]
  10. Bi, W.L. et al. Artificial intelligence in cancer imaging: Clinical challenges and applications. CA Cancer J. Clin. 69, 127–157 (2019). [Google Scholar]
  11. Manogaran, G., Shakeel, P. M., Hassanein, A. S., Malarvizhi Kumar, P. & Chandra Babu, G. Machine Learning Approach-Based Gamma Distribution for Brain Tumor Detection and Data Sample Imbalance Analysis. IEEE Access 7, 12–19 (2019). [Google Scholar]
  12. Fukushima, K. Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position. Biol. Cybern. 36, 193–202 (1980). [Google Scholar]
  13. He, K., Zhang, X., Ren, S. & Sun, J. Deep Residual Learning for Image Recognition. in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 770–778 (2016). doi:10.1109/CVPR.2016.90. [Google Scholar]
  14. Ronneberger, O., Fischer, P. & Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. in LNCS vol. 9351 234–241 (2015). [Google Scholar]
  15. Chala, M., Nsiri, B., El yousfi Alaoui, M. H., Soulaymani, A., Mokhtari, A. & Benaji, B. An automatic retinal vessel segmentation approach based on Convolutional Neural Networks. Expert Syst. Appl. 115459 (2021) doi:10.1016/j.eswa.2021.115459. [Google Scholar]
  16. Chala, M., Nsiri, B., Soulaymani, A., Mokhtari, A. & Benaji, B. Deep Convolutional Networks based on encoder-decoder architecture for automatic Optic Disc segmentation in retina images. Int. J. Adv. Trends Comput. Sci. Eng. 9, 2078–2084 (2020). [Google Scholar]
  17. Ozturk, T. et al. Automated detection of COVID-19 cases using deep neural networks with X-ray images. Comput. Biol. Med. 121, (2020). [Google Scholar]
  18. Jain, G., Mittal, D., Thakur, D. & Mittal, M. K. A deep learning approach to detect Covid-19 coronavirus with X-Ray images. Biocybern. Biomed. Eng. 40, 1391–1405 (2020). [Google Scholar]
  19. Irmak, E. Implementation of convolutional neural network approach for COVID-19 disease detection. Physiol. Genomics 52, 590–601 (2020). [Google Scholar]
  20. Gao, K. et al. Dual-branch combination network (DCN): Towards accurate diagnosis and lesion segmentation of COVID-19 using CT images. Med. Image Anal. 67, (2021). [Google Scholar]
  21. Walvekar, S. & Shinde, S. Efficient Medical Image Segmentation Of COVID-19 Chest CT Images Based on Deep Learning Techniques. in 2021 International Conference on Emerging Smart Computing and Informatics (ESCI) 203–206 (2021). doi:10.1109/ESCI50559.2021.9397043. [Google Scholar]
  22. Zhang, K. et al. Clinically Applicable AI System for Accurate Diagnosis, Quantitative Measurements, and Prognosis of COVID-19 Pneumonia Using Computed Tomography. Cell 181, 1423-1433.e11 (2020). [Google Scholar]
  23. An, P. et al. CT Images in COVID-19. (2020) doi:10.7937/TCIA.2020.GQRY-NC81. [Google Scholar]
  24. COVID-19 X-ray image classification. https://kaggle.com/c/stat946winter2021. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.