Open Access
Issue |
E3S Web Conf.
Volume 319, 2021
International Congress on Health Vigilance (VIGISAN 2021)
|
|
---|---|---|
Article Number | 01103 | |
Number of page(s) | 5 | |
DOI | https://doi.org/10.1051/e3sconf/202131901103 | |
Published online | 09 November 2021 |
- G. Hamed, M. Abd El Rahman Marey, S. Amin, M. Fahmy Tolba, Deep Learning in Breast Cancer Detection and Classification, March 2020. [Google Scholar]
- M. Divyavani, K. Govindaswamy, An Analysis On SVM & ANN Using Breast Canser Dataset, January 2021. [Google Scholar]
- P.P. Golagani, T.S. Mahalakshmi, K. Beebi Shaik, Supervised Learning Breast Cancer Data Set Analysis in MATLAB Using Novel SVM Classifier, January 2021. [Google Scholar]
- S. Hafizah, S. Ahmad, R. Sallehuddin, and N. Azizah, “Cancer Detection Using Artificial Neural Network and Support Vector Machine: A Comparative Study”, 2018. [Google Scholar]
- S. G. Durai, S. H. Ganesh, and A. J. Christy, “Novel Linear Regressive Classifier for the Diagnosis of Breast Cancer,” In Computing and Communication Technologies (WCCCT), 2017 World Congress on 2018. [Google Scholar]
- Z.F. Hussain, H.R. Ibraheem, M. Aljanabi, A.H. Ali, A new model for iris data set classification based on linear support vector machine parameter's optimization, February 2020. [Google Scholar]
- J. Cervantesa, F. Garcia Lamont, L. Rodrguez Mazahuab, A. Lopez: A comprehensive survey on support vector machine classification: Applications, challenges and trends. 2019. [Google Scholar]
- M. El Mountassir, G. Mourot, S. Yaacoubi, D. Maquin: SVM for better classification of Guided Waves monitoring data, April 2016. [Google Scholar]
- V.J. Gaikwad, “Detection of Breast Cancer in Mammogram using Support Vector Machine”, International Journal of Scientific Engineering and Research, 2016. [Google Scholar]
- S. Chakrasali, M. Akshata, B.V. Aparna, S. Donthi and N. Jain, “'A Comparative Study between Contourlet and Wavelet Transform for Medical Image Registration and Fusion”, International Journal of Computer Science and Network Security, 2015. [Google Scholar]
- H. Zamani HosseinAbadi, R. Amirfattahi, B. Nazari, H. R. Mirdamadi, and S. A. Atashipour, GUW-based structural damage detection using WPT statistical features and multiclass SVM, Appl. Acoust., vol. 86, pp. 5970, Dec. 2014. [CrossRef] [Google Scholar]
- M. Hassan, R. Rajkumar, D. Isa, and R. Arelhi, Defect Classification by Using NonDestructive Testing and Improved Support Vector Machine Classification, International journal of engineering and innovative technology, vol. 2, no. 7, pp. 8593, 2013. [Google Scholar]
- X. Li, Structural Damage Classification using Support Vector Machine, thse de doctorat, 2012. [Google Scholar]
- M. Sewak, P. Vaidya, C.C. Chan, Z.H. Duan, SVM Approach to Breast Cancer Classification, December 2007. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.