Open Access
Issue
E3S Web Conf.
Volume 319, 2021
International Congress on Health Vigilance (VIGISAN 2021)
Article Number 01111
Number of page(s) 5
DOI https://doi.org/10.1051/e3sconf/202131901111
Published online 09 November 2021
  1. A. Alhamwi, D. Kleinhans, S. Weitemeyer, T. Wogt, Moroccan National Energy Strategy reviewed from a meteorological perspective, Energy Strategy Reviewed 6, p. 39-47 (2015) [CrossRef] [Google Scholar]
  2. M. Azeroual, A. El Makrini, H. El Moussaoui, H. El Markhi, Renewable Energy Potential and Available capacity for wind and solar Power in Morocco Towards 2030, Journal of Engineering Science and Technology Review 11(1), p. 189-198 (2018) [CrossRef] [Google Scholar]
  3. A. Nouri, M. Ait Bahram, E. Elwanaki, M. Enzili, Moroccan wind farm potential feasibility. Case Study, Energy conversion and Management 112, p. 39-51 (2016) [Google Scholar]
  4. A. Allouhi, Energetic, exergetic, economic and environmental (4E) assessment process of wind power generation, Journal of Cleaner Production 235, p.123-137 (2019) [CrossRef] [Google Scholar]
  5. Y. Amellas, O. El Bakkali, A. Djebli, A. Echchelh, Short-term wind speed prediction based on MLP and NARX networks models, Indonesian Journal of Electrical Engineering and Computer Science, Vol 18, N°1, p.150-157 (2020) [CrossRef] [Google Scholar]
  6. R. Sharma, D. Singh, A review of wind Power and Wind Speed Forecasting, Journal of Engineering Research and Application 8, Issue 7( Part 3), p.01-09 (2018) [Google Scholar]
  7. E. Erdem, J. Shi, ARMA based approaches for forecasting the tuple of wind speed and direction, Applied Energy 88, p. 1405-1414 (2011) [CrossRef] [Google Scholar]
  8. Y. El Khchine, M. Sriti, N. Eddine El Kadri Elyamani, Evaluation of wind energy potential and trends in Morocco, Heliyon 5, e01830 (2019) [CrossRef] [PubMed] [Google Scholar]
  9. H. Bidaoui, I. El Abbassi, A. El bouardi, A. Darcherif, Wind Speed Data Analysis Using Weibull and Rayleigh Distribution Function, Case Study: Five cites Northern Morocco, Procedia Manufacturing, Vol 23, p.786-793 (2019) [CrossRef] [Google Scholar]
  10. A. El Ibrahimi, A. Baali, Application of several Artificial Intelligence Models for forecasting Meteorological Drought Using the standardized precipitations Index in the Saiss Plain (Northern Morocco), International Journal of Intelligent Engineering ans Systems, Vol 11, N°1, p.267-275 (2018) [CrossRef] [Google Scholar]
  11. G. Gelly, Réseaux de neurones récurrents pour le traitement automatique de la parole ( Thèse de Doctorat ) (2017) [Google Scholar]
  12. G.W, H.J. Lu, Y.R. Chang, Y.D. Lee, An improved neural network-based approach for short-term wind speed and power forecast, Renewable Energy 105, p.301-311 (2017) [CrossRef] [Google Scholar]
  13. A. A. Hussein, A Derivation and comparison of open loop and closed loop Neural Network Battery, State-of-Charge Estimators, Energy Procedia 75, p.1856-1861 (2015) [CrossRef] [Google Scholar]
  14. A. Di Piazza, M. Carmela Di Piazza, G. Vitale, Solar and Wind forecasting by NARX Neural Networks, Renewable Energy and Environmental Sustainable 1, 39 (2016) [CrossRef] [EDP Sciences] [Google Scholar]
  15. T. Van Tung, P, H.Thom, Yang, Bo¬Suk ,An improved hybrid of nonlinear auto-regressive with exogenous input and autoregressive moving average for long¬term machine state forecasting based on vibration signal. Expert Systems With Applications, 37 (4). p. 3310-¬ 3317.ISSN 0957-¬4174 (2010) [CrossRef] [Google Scholar]
  16. I. Sansa, N. Mrabet Bellaaj, Solar Radiation using NARX model, Advanced Applications for Artificial Neural Network, Chapter 13 (2018) [Google Scholar]
  17. S. Mammadi, Financial time series prediction using artificial neural network based on Levenberg-Marquardt algorithm, 9th International International Conference on Theory and Application of Soft Computing, Computing with words and Perception, ICSCCW, Procedia Computer Science 120, 602-607 (2017) [CrossRef] [Google Scholar]
  18. M. Hock Fun, M.T. Hagan, Levenberg-Marquardt Training for Modular Networks, Proceedings of International Conference on Neural Networks (ICNN’96) (1996). [Google Scholar]
  19. Y.Amellas, A.Echchelh, Levenberg-Marquardt Training Function using, MLP, RNN and Elman Network to Optimize Hourly Forecasting in Tetouan City (Northern Morocco), Journal of Engineering Science and Technology Review 13 (1) 67-71 (2020). [CrossRef] [Google Scholar]
  20. M.V. Shcherbakov, A.Brebels, N.L. Shcherbakova, A.P. Tyukov, T.A. Janosky, V.A. Kamaev, Survey of Forecast Error Measures, World Applied Sciences Journal 24 (Information Technologies in Modern Industry, Education and Society) , p. 171-176 (2013) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.