Open Access
E3S Web Conf.
Volume 319, 2021
International Congress on Health Vigilance (VIGISAN 2021)
Article Number 02014
Number of page(s) 6
Section Methods, Tools and Techniques in Health Vigilance
Published online 24 November 2021
  1. R. Canton, A. Novais, A. Valverde, et al. Prevalence and spread of extended-spectrum bêta-lactamase-producing Enterobacteriaceae in Europe. Clin Microbiol Infect; 14 pp: 144-53, (2008). [Google Scholar]
  2. BA. Rogers, Z. Aminzadeh, Y. Hayashi, DL. Paterson. Country-to-country transfer of patients and the risk of multiresistant bacterial infection. Clin Infect Dis 53(1) pp:49-56 (2011). [Google Scholar]
  3. DM Livermore, Canton R, Gniadkowski M, Nordmann P, Rossolini GM, Arlet G, et al. CTX-M: changing the face of ESBLs in Europe. J Antimicrob Chemother 59(2) pp:165–74. (2007). [Google Scholar]
  4. R. Cantón, TM. Coque. The CTX-M β-lactamase pandemic. Curr Opin Microbiol. Oct; 9(5):466–75, (2006). [Google Scholar]
  5. Recommandations relative’s aux mesures à mettre en oeuvre pour prévenir l’émergence des entérobactéries BLSE et lutter contre leur dissémination [Internet]. Haut Conseil de la Santé Publique; Feb. Available from: (2010) [Google Scholar]
  6. S. Galvin, F. Boyle, P. Hickey, A. Vellinga, D. Morris, M.Cormican. Enumeration and characterization of antimicrobial-resistant Escherichia coli bacteria in effluent from municipal, hospital, and secondary treatment facility sources. Appl Environ Microbiol; 76, pp:4772—9 (2010). [Google Scholar]
  7. E. Korzeniewska M. Harnis. Extended-spectrum beta-lactamase (ESBL)-positive Enterobacteriaceae in municipal sewage and their emission to the environment. J Environ Manage;128: 904—11. (2013). [Google Scholar]
  8. TM. Hooton. Clinical practice. Uncomplicated urinary tract infection. N Engl J Med;366, pp:1028—37. (2012). [Google Scholar]
  9. JDD. Pitout, ND. Hanson, Church DL, Laupland KB. Population-Based Laboratory Surveillance for Escherichia coli–Producing Extended-Spectrum β-Lactamases: Importance of Community Isolates with blaCTX-M Genes. Clin Infect Dis;38(12), pp: 1736–41. (2004). [Google Scholar]
  10. J. Rodríguez-Baño, MD. Navarro, L.Romero, L. Martínez-Martínez, MA. Muniain, EJ. Perea, et al. Epidemiology and clinical features of infections caused by extended-spectrum beta-lactamaseproducing Escherichia coli in nonhospitalized patients. J Clin Microbiol.;42(3) pp:1089–94 (2004) [Google Scholar]
  11. J. Rodríguez-Baño, MD. Navarro, L. Romero, MA. Muniain, M. Cueto, MJ. Ríos, et al. Bacteremia due to extended-spectrum β-lactamase–producing Escherichia coli in the CTX-M era: a new clinical challenge. Clin Infect Dis. 43(11), pp:1407–14. (2006) [Google Scholar]
  12. J. Rodriguez-Bano, JC. Alcalá, JM. Cisneros, F. Grill, A. Oliver, JP. Horcajada, et al. Community infections caused by extended-spectrum beta-lactamase-producing Escherichia coli. Arch Intern Med. 168(17), p:1897, (2008) [Google Scholar]
  13. J-C. Lee, N-Y. Lee, H-C. Lee, W-H. Huang, K-C. Tsui, C-M. Chang, et al. Clinical characteristics of urosepsis caused by extended-spectrum beta-lactamase-producing Escherichia coli or Klebsiella pneumonia and their emergence in the community. J Microbiol Immunol Infect. Avril;45(2):127– 33, (2012) [Google Scholar]
  14. Jeannette Munez-Aguayo, Kelvin S. Lang, Timothy M Lapara Gerald Gonzàlez and Randall S. Singer., 2007. Evaluating the Effect of Chlortetracycline on the proliferation of Antibiotic-resistant bacteria in a stimuled river water ecosystem. Applied and Environnemental Microbiology. 73 (7): 5421-5425. [Google Scholar]
  15. JD. Pitout, P. Nordmann, KB. Laupland, L. Poirel. Emergence of Enterobacteriacae producing extended-spectrum betalactamases (ESBLs) in the community. J Antimicrob ChemotherJul; 56 (1)pp:52-9, PubMed/Google Scholar (2005) [Google Scholar]
  16. ER. Bevan, AM. Jones & PM. Hawkey. Global epidemiology of CTX-M β-lactamases: temporal and geographical shifs in genotype. J. Antimicrob. Chemother. 72, pp: 2145–2155. (2017). [Google Scholar]
  17. R. Canton, JM. Gonzalez-Alba & JC. Galan. CTX-M enzymes: origin and difusion. Front. Microbiol. 3, p: 110. (2012). [Google Scholar]
  18. Rodier J., Legube B. et Merlet N. (2009). L’analyse de l’eau. Ed. Dunod Paris. ISBN: 978-2-10-054179 [Google Scholar]
  19. K. Ouarrak, A. Chahlaoui, and I. Taha. Monitoring of the parasitic load wastewater of oued Ouislane and ouedbouishak from the city of Meknes Morocco. IJISR 6 (07), pp. 1063-1067, (2017). [Google Scholar]
  20. CA-SFM, Comité de l’antibiogramme de la société Française de microbiologie. Antimicrobial committee of the French society of microbiology], CASFM (2020). [Google Scholar]
  21. Akoua Koffi C., Guessennd N., Gbonon V., Faye Ketté H., Dosso M., 2004. Methicillin resistance of Staphylococcus in Abidjan 1998-2001: A new problem. Medecine et maladies infectieuses; 34(3):132-6. [Google Scholar]
  22. Guessennd N.; S. Bremont; V. Gbonon; A. KacouN’Douba; E. Ekaza; T. Lambert; M. Dosso; P. Courvalin., 2008. Résistance aux quinolones de type qnr chez lez entérobactéries productrices de bêta-lactamases à spectre élargi à Abidjan en Côte d’Ivoire. Pathologie Biologie 56: 439-446. [Google Scholar]
  23. Thomas S., Holger V., Slike K., Wolfagang K., Katja S., Bernd J. and Ursula O., 2007. Detection of antibiotic- resistant bacteria and their resistance genes in waster, surface water and drinking water biofilms, FEMS Microbiology Ecology. 43 (3):325-335. [Google Scholar]
  24. Senka Dzidic, Vladimir Bedekovic., 2003. Horizontal gene transfer-emergency multidrug resistance in hospital bacteria. Acta Pharmacol; 24 (6): 519-526 [Google Scholar]
  25. C. Teresa, John Horan, W. White, R. William Jarvis Nosocomial infection surveillance. Surveillance summaries December 01, 1986/ 35(SS-1); 17-29. 1984. [Google Scholar]
  26. K. El Rhazi, S. Elfakir, M. Berraho N. Tachfouti, Z. Serhier, C. Kanjaa et C Nejjari.. Prévalence et facteurs de risque des infections nosocomiales au CHU Hassan II de Fès (Maroc). Heath Journal volume 13 No. (2007 [Google Scholar]
  27. S. Galvin, F. Boyle, P. Hickey, A. Vellinga, D. Morris, M.Cormican. Enumeration and characterization of antimicrobial-resistant Escherichia coli bacteria in effluent from municipal, hospital, and secondary treatment facility sources. Appl Environ Microbiol;76, pp: 4772-9. (2010). [Google Scholar]
  28. E. Liebana, M. Batchelor, KL. Hopkins, et al. Longitudinal farm study of extended-spectrum beta-lactamase-mediated resistance. J Clin Microbiol;44, pp:1630-4. 2006 [Google Scholar]
  29. [29] RJ.Mesa, V Blanc, AR Blanch, et al. Extended-spectrum betalactamase-producing Enterobacteriaceae in different environments (humans, food, animal farms and sewage). J Antimicrob Chemother 58 pp: 211–5. (2006) [Google Scholar]
  30. S. Leotard, N.Negrin. Epidemiology of Enterobacteriaceae producing extended-spectrum beta-lactamase in Grasse Hospital. (2005-2008) Pathol Biol (Paris). Feb; 58(1): 35-8. (2010) PubMed I Google Scholar [Google Scholar]
  31. A. Ben Haj Khalifa, M. Khedher. Epidémiologie des souches de Klebsiella spp: uropathogènes productrices de β-lactamases à spectre élargi dans un hôpital universitaire Tunisien. Pathol Biol Apr; 60(2): e1-5. (2009-2012). PubMed | Google Scholar [Google Scholar]
  32. EARSS (European Antimicrobial Resistance Surveillance system) (2005) [Google Scholar]
  33. AA. Diallo, H. Brugere, M. Kerouredan, et al. Persistence and prevalence of pathogenic and extended-spectrum beta-lactamase-producing Escherichia coli in municipal wastewatertreatment plant receiving slaughterhouse wastewater. Water Res; 47, pp: 4719-29, (2013). [Google Scholar]
  34. H. Blaak, P. deKruijf, RA. Hamidjaja, AH. vanHoek, AM. deRodaHusman, FM. Schets. Prevalence and characteristics of ESBL-producing E. coli in Dutch recreational waters influenced by wastewater treatment plants. Vet Microbiol;171 pp: 448—59, (2014). [Google Scholar]
  35. E. Korzeniewska, M. Harnisz. Extended-spectrum beta-lactamase (ESBL)-positive Enterobacteriaceae in municipal sewage and their emission to the environment. J Environ Manage;128, pp: 904-11, (2013) [Google Scholar]
  36. E. Ruppe, B. Lixandru, R. Cojocaru, et al. Relative fecal abundance of extended-spectrum beta-lactamases-producing Escherichia coli and their occurrence in urinary-tract infections in women. Antimicrob Agents Chemother; 57, pp:4512-7. [00238—13], (2013). [Google Scholar]
  37. S. Coutu, L. Rossi, DA. Barry, S. Rudaz, N. Vernaz. Temporal variability of antibiotics fluxes in wastewater and contribution from hospitals. PLoS One; 8e53592. (2013). [Google Scholar]
  38. M. J. Islam., M. S. Uddin, M. A. Hakim, K. K. Das, M. N. Hasan. Role of untreated liquid hospital waste to the development of antibiotic resistant bacteria. J. Innov. Dev. Strategy. 2 (2), pp:17-21. (2008). [Google Scholar]
  39. R. Bonnet. In P. Courvalin, R. Leclercq, E. Bingen. Béta-lactamines et entérobactéries. Antibiogramme, 2ème édition, Editions ESKA, pp: 141-162, (2007) [Google Scholar]
  40. K. Kümmerer, Antibiotics in the aquatic environment. A review. Part II. Chemosphere, 75, pp: 435-441, (2009b). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.