Open Access
E3S Web Conf.
Volume 319, 2021
International Congress on Health Vigilance (VIGISAN 2021)
Article Number 02017
Number of page(s) 8
Section Methods, Tools and Techniques in Health Vigilance
Published online 24 November 2021
  1. B. Saraceno, “The WHO World Health Report 2001 on mental health,” Epidemiol Psichiatr Soc, vol. 11, pp. 83–87; 2002. [CrossRef] [PubMed] [Google Scholar]
  2. D.A.Cory-Slechta, L. McCoy, and E. K. Richfield, “Time course and regional basis of Pb-induced changes in MK-801 binding: reversal by chronic treatment with the dopamine agonist apomorphine but not the D1 agonist SKF-82958,” J Neurochem, vol. 68, no. 5, pp. 2012–2023; 1997. [Google Scholar]
  3. L. Patrick, “Lead toxicity, a review of the literature. Part 1: Exposure, evaluation, and treatment,” Altern Med Rev vol. 11, no. 1; pages 2–22; 2006. [PubMed] [Google Scholar]
  4. M. J. Kosnett Wedeen, R. P., Rothenberg, S. J., Hipkins, K. L., Materna, B. L., Schwartz, B. S., Hu, H., & Woolf, A. “Recommendations for Medical Management of Adult Lead Exposure,” Environmental Health Perspectives, vol. 115, no. 3, pp. 463–471, 2007. [CrossRef] [PubMed] [Google Scholar]
  5. J. Chaibat, M Lamtai, A Mesfioui, A El Hessni, and A Ouichou, “Induction of depressive-like and anxiety-like effects by sub-chronic exposure to lead in Wistar rats,” J. Neurology & Neurophysiology, 8:1, 13p; 2017. [Google Scholar]
  6. O. Chanel Catherine Dollfus, Jean-Marie Haguenoer, Philippe Hartemann, Guy Huel, “Plomb dans l’environnement: quels risques pour la santé?,” INSERM, p. 481; 2017. [Google Scholar]
  7. B. Ferry, D. Gervasoni, and C. Vogt, Stereotaxic Neurosurgery in Laboratory Rodent. Springer-verlag Paris, 2014. [CrossRef] [Google Scholar]
  8. Paxinos G and Watson C, “The rat brain in stereotaxic coordinates ,” Burlington, from [Google Scholar]
  9. M. Durand Berton O, Aguerre S, Edno L, Combourieu I, Mormede P, Chaouloff F. “Effects of repeated fluoxetine on anxiety-related behaviours, central serotonergic systems, and the corticotropic axis in SHR and WKY rats,” Neuropharmacology, vol.38, pp. 893–907; 1999. [CrossRef] [PubMed] [Google Scholar]
  10. R. N. Walsh and R. A. Cummins, “The Open-Field Test: a critical review,” Psychol Bull, vol. 83, pp. 482–504; 1976. [CrossRef] [PubMed] [Google Scholar]
  11. A. A. Walf and C. A. Frye, “The use of the elevated plus maze as an assay of anxiety-related behavior in rodents,” Nat Protoc, vol. 2, pp. 322–328; 2007. [CrossRef] [PubMed] [Google Scholar]
  12. S. Pellow, P. Chopin, S. E. File, and M. Briley, “Validation of open: closed arm entries in an elevated plus-maze as a measure of anxiety in the rat,” Journal of Neuroscience Methods, vol. 14, pp. 149–167; 1985. [CrossRef] [PubMed] [Google Scholar]
  13. R. D. Porsolt, M. Le Pichon, and M. Jalfre, “Depression: a new animal model sensitive to antidepressant treatments,” Nature, vol. 266, pp. 730–732; 1977. [CrossRef] [PubMed] [Google Scholar]
  14. R. D. Porsolt, G. Anton, N. Blavet, and M. Jalfre, “Behavioural despair in rats: A new model sensitive to antidepressant treatments,” European Journal of Pharmacology, vol. 47, pp. 379–391; 1978. [CrossRef] [PubMed] [Google Scholar]
  15. O.Olakunle James, O.Adejoke Yetunde, Tolulope Josiah, MOSAKU, Onigbinde Oluwanisola Akanji, and Oyedele Rotimi Abiodun5, “Elevated Plus Maze and Y-Maze Behavioral Effects of Subchronic, Oral Low Dose Monosodium Glutamate in Swiss Albino Mice,” IOSJPBS, vol.3, pp. 21–27; 2012. [Google Scholar]
  16. N. Yassine, “Lésions sélectives de deux populations de neurones affectées dans la maladie d’Alzheimer: impact sur les performances cognitives et l’histopathologie des souris tg2576,” These de doctorat, Strasbourg, 2011. [Google Scholar]
  17. J. O’Keefe and J. Dostrovsky, “The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat,” Brain Research, vol. 34, pp. 171–175; 1971. [CrossRef] [PubMed] [Google Scholar]
  18. R. Morris, “Developments of a water-maze procedure for studying spatial learning in the rat,” J Neurosci Methods, vol. 11, pp. 47–60; 1984. [CrossRef] [PubMed] [Google Scholar]
  19. R. D’Hooge and P. P. De Deyn, “Applications of the Morris water maze in the study of learning and memory,” Brain Research Reviews, vol. 36, pp. 60–90; 2001. [CrossRef] [PubMed] [Google Scholar]
  20. R. E. Brown and A. A. Wong, “The influence of visual ability on learning and memory performance in 13 strains of mice,” Learn Mem, vol. 14, pp. 134–144; 2007. [CrossRef] [PubMed] [Google Scholar]
  21. M. B. Grisham, G. G. Johnson, and J. R. Lancaster, “Quantitation of nitrate and nitrite in extracellular fluids,” Elsevier, vol. 268, pp. 237–246. 1996. [Google Scholar]
  22. R. M. Freitas, S. M. M. Vasconcelos, F. C. F. Souza, G. S. B. Viana, and M. M. F. Fonteles, “Oxidative stress in the hippocampus after pilocarpine-induced status epilepticus in Wistar rats: Oxidative stress after status epilepticus in rats,” FEBS Journal, vol. 272, pp. 1307–1312; 2005. [CrossRef] [Google Scholar]
  23. C. Beauchamp and I. Fridovich, “Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels,” Analytical Biochemistry, vol. 44, pp. 276–287; 1971. [CrossRef] [PubMed] [Google Scholar]
  24. R. P. Kesner and E. T. Rolls, “A computational theory of hippocampal function, and tests of the theory: new developments,” Neurosci Biobehav Rev, vol. 48, pp. 92–147; 2015, [CrossRef] [PubMed] [Google Scholar]
  25. W. Pitchot, M. Polis, S. Belachew, and M. Ansseau, “[Depression and neuroplasticity],” Rev Med Liege, vol. 63, pp. 372–377; 2008. [PubMed] [Google Scholar]
  26. E. J. Nestler, M. Barrot, R. J. DiLeone, A. J. Eisch, S. J. Gold, and L. M. Monteggia, “Neurobiology of depression,” Neuron, vol. 34, pp. 13–25; 2002 [CrossRef] [PubMed] [Google Scholar]
  27. J. E. LeDoux, “Emotion circuits in the brain,” Annu Rev Neurosci, vol. 23, pp. 155–184, 2000. [CrossRef] [PubMed] [Google Scholar]
  28. S. F. de S. Sabrina Francesca de Souza Lisboa, G. Gonçalves, F. Komatsu, C. A. S. Queiroz, A. A. Almeida, and E. G. Moreira, “Developmental Lead Exposure Induces Depressive-like Behavior in Female Rats,” Chem. Res. Toxicol,.vol. 28, pp. 67–77, 2008. [Google Scholar]
  29. G. Winneke and U. Krämer, “Neurobehavioral aspects of lead neurotoxicity in children,” Cent Eur J Public Health, vol. 5, pp. 65–69; 1997. [PubMed] [Google Scholar]
  30. W. Sansar, M. M. Bouyatas, S. Ahboucha, and H. Gamrani, “Effects of chronic lead intoxication on rat serotoninergic system and anxiety behavior,” Acta Histochem, vol. 114, pp. 41–45; 2012. [CrossRef] [PubMed] [Google Scholar]
  31. M. Tang Luo L, Zhu D, Wang M, Luo Y, Wang H, Ruan DY “Muscarinic cholinergic modulation of synaptic transmission and plasticity in rat hippocampus following chronic lead exposure,” Arch Pharmacol, vol. 379, pp. 37–45; 2009. [CrossRef] [PubMed] [Google Scholar]
  32. W. F. Stewart Schwartz BS, Davatzikos C, Shen D, Liu D, Wu X, Todd AC, Shi W, Bassett S, Youssem D. “Past adult lead exposure is linked to neurodegeneration measured by brain MRI,” Neurology, vol. 66, pp. 1476–1484; 2006. [CrossRef] [PubMed] [Google Scholar]
  33. Z.-H. Zhao Zheng G, Wang T, Du KJ, Han X, Luo WJ, Shen XF, Chen JY “Low-level Gestational Lead Exposure Alters Dendritic Spine Plasticity in the Hippocampus and Reduces Learning and Memory in Rats,” Sci Rep, vol. 8, p. 3533; 2018. [Google Scholar]
  34. G. R. Reddy et al “Lead induced effects on acetylcholinesterase activity in cerebellum and hippocampus of developing rat,” Int. j. dev. neurosci., vol. 21, pp. 347–352, 2003. [CrossRef] [PubMed] [Google Scholar]
  35. G. R. Reddy, B. C. Devi, and C. S. Chetty, “Developmental lead neurotoxicity: Alterations in brain cholinergic system,” NeuroToxicology, vol. 28, pp. 402–407, 2007. [CrossRef] [PubMed] [Google Scholar]
  36. K. K. Bokara, E. Brown, R. McCormick, P. R. Yallapragada, S. Rajanna, and R. Bettaiya, “Lead-induced increase in antioxidant enzymes and lipid peroxidation products in developing rat brain,” Biometals, vol. 21, pp. 9–16; 2008. [CrossRef] [PubMed] [Google Scholar]
  37. L. Zhang, R. Tu, Y. Wang, Y. Hu, X. Li, X. Cheng, Y. Yin, W. Li, H. Huang. “Early-Life Exposure to Lead Induces Cognitive Impairment in Elder Mice Targeting SIRT1 Phosphorylation and Oxidative Alterations,” Front. Physiol., vol. 8, p. 446; 2017. [Google Scholar]
  38. V. N. Adonaylo and P. I. Oteiza, “Pb2+ promotes lipid oxidation and alterations in membrane physical properties,” Toxicology, vol. 132, pp. 19–32; 1999. [CrossRef] [PubMed] [Google Scholar]
  39. A. J. ADLER, R. H. BARTH, and G. M. BERLYNE, “Effect of lead on oxygen free radical metabolism: inhibition of superoxide dismutase activity,” Trace elem. med, vol. 10, pp. 93–96; 1993. [Google Scholar]
  40. H. Gurer and N. Ercal, “Can antioxidants be beneficial in the treatment of lead poisoning?” Free Radical Biology and Medicine, vol.29; pp. 927–945; 2000. [CrossRef] [Google Scholar]
  41. S. J. Yiin and T. H. Lin, “Lead-catalyzed peroxidation of essential unsaturated fatty acid,” Biol Trace Elem Res, vol. 50; pp. 167–172, Nov. 1995, [Google Scholar]
  42. L. J. Lawton and W. E. Donaldson, “Lead-induced tissue fatty acid alterations and lipid peroxidation,” Biol Trace Elem Res, vol. 28, no. 2, pp. 83–97, 1991. [CrossRef] [PubMed] [Google Scholar]
  43. E. J. Bechara, “Oxidative stress in acute intermittent porphyria and lead poisoning may be triggered by 5-aminolevulinic acid,” Braz J Med Biol Res, vol. 29, no. 7, pp. 841–851, Jul. 1996. [PubMed] [Google Scholar]
  44. H. P. Monteiro, D. S. Abdalla, O. Augusto, and E. J. Bechara, “Free radical generation during delta-aminolevulinic acid autoxidation: induction by hemoglobin and connections with porphyrinpathies,” Arch Biochem Biophys, vol. 271, pp. 206–216, 1989, [CrossRef] [PubMed] [Google Scholar]
  45. Monteiro HP, Abdalla DSP, Faljoni-Alario A, and Bechara EJH., “Generation of active oxygen species during coupled autoxidation of oxyhemoglobin and delta-aminolevulinic acid,” Arch Biochem Biophys; pages 6–100; 1986. [Google Scholar]
  46. A. Mylroie, H. Collins, C. Umbles, and J. Kyle, “Erythrocyte superoxide dismutase activity and other parameters of copper status in rats ingesting lead acetate,” TAAP vol. 82, no. 3, pp. 512–520, 1986. [Google Scholar]
  47. X. Wang and E. K. Michaelis, “Selective neuronal vulnerability to oxidative stress in the brain,” Front Aging Neurosci, vol. 2, p. 12, 2010. [Google Scholar]
  48. A. Vyas, R. Mitra, B. S. Shankaranarayana Rao, and S. Chattarji, “Chronic Stress Induces Contrasting Patterns of Dendritic Remodeling in Hippocampal and Amygdaloid Neurons,” J. Neurosci., vol. 22, pp. 6810–6818, 2002. [CrossRef] [PubMed] [Google Scholar]
  49. R. M. Amos-Kroohs et al., “Developmental Stress and Lead (Pb): Effects of Maternal Separation and/or Pb on Corticosterone, Monoamines, and Blood Pb in Rats,” Neurotoxicology, vol. 54, pp. 22–33, 2016. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.