Open Access
Issue
E3S Web Conf.
Volume 320, 2021
Energy Systems Environmental Impacts (ESEI 2021)
Article Number 01004
Number of page(s) 10
Section Hydroelectric and Energy Machines Impact on Ecosystem
DOI https://doi.org/10.1051/e3sconf/202132001004
Published online 09 November 2021
  1. A. Y. Volkov, Donskova, L.A., Kotkova, V.V. Technological solutions in food production in the context of ensuring their quality and safety. New technologies, 3, 2027 (2018) [Google Scholar]
  2. O.V. Chernyshova, Tsibizova, M.E. Technochemical composition and functional and technological properties of underutilized fish raw materials of the Volga-Caspian basin. Bulletin of the ASTU, Ser. Fisheries, 189–194 (2012) [Google Scholar]
  3. C. James, Purnell, G., James, S.J. A Review of Novel and Innovative Food Freezing Technologies. Food and Bioprocess Technology, 8 (8), 1616-1634 (2014) DOI: http://dx.doi.org/10.1007/s11947-015-1542-8 [Google Scholar]
  4. L.V. Antipov, Voronkova, Yu.V. Recipe development of minced meat using the ECOLIGHT NATIVE dietary fibers. Bulletin of the Voronezh State University of Engineering Technologies, 4,116-119 (2013) [Google Scholar]
  5. I.S. Drozdetskaya, Berezovikova, I.P. The influence of liquid smoke flavoring on the rheological characteristics of minced fish. Bulletin of the Voronezh State University of Engineering Technologies, 80 (1), 193-198 (2018) DOI: https://doi.org/10.20914/2310-1202-2018-1-193-198. [CrossRef] [Google Scholar]
  6. S. Наsharifian, Ebrahim, A., Mortazavi, M., Moghadam, M. Effects of refrigerated storage on the microstructure and quality of Grouper (Epinephelus coioides) fillets. Journal Food Science Technology, 51(5), 929–935 (2014) [Google Scholar]
  7. L.I. Drozdova, Pivnenko, T.N. Features of the rheological indicators of minced meat from deep-sea fish and products from them. Izvestiya of TINRO, 172, 274–281 (2013) [Google Scholar]
  8. D. Mozaffarian, Rimm, E. B. Fish intake, contaminants, and human health – Evaluating the risks and the benefits. Journal of the American Medical Association, 296, 1885–1899 (2006): DOI: https://doi.org/10.1001/jama.296.15.1885. [CrossRef] [PubMed] [Google Scholar]
  9. F. Zhang, Fang, L., Wang, C., Shi, L. et al. Effects of starches on the textural, rheological, and color properties of surimi-beef gels with microbial tranglutaminase. Meat Science, 93 (3), 533–537 (2013) DOI: https://doi.org/10.1016/j.meatsci.2012.11.013. [Google Scholar]
  10. M. D. Mukatova, Kirichko, N. A. Romanenkova, E. N., Zotova N. Yu. Development of a technology for the production of washed minced fish from unprofitable objects of the Volga-Caspian basin. Bulletin of the Murmansk State Technical University, 19 (3), 625632 (2016) DOI: 10.21443/1560-9278-2016-3-625-632 [Google Scholar]
  11. N.V. Yartseva, Dolganova, N.V. Study of the possibility of improving the quality of minced fish by washing with organic acids. ASTU Bulletin. Ser. Fishery, 1, 158-165 (2011) [Google Scholar]
  12. E.N. Golikova, Mukatova, M.D., Kirichko, N.A. Study of the possibility of producing the minced meat of the “surimi” type from underutilized small biological resources of the Volga-Caspian region. ASTU Bulletin. Ser. Fishery, 1, 103-109 (2011) [Google Scholar]
  13. A.S. Vinnov, Mayevskaya, T.N., Dolganova, N.V. Influence of the type of wash water on the rheological properties of gels from surimi minced meat. ASTU Bulletin. Ser. Fishery, 1, 180-189 (2013) [Google Scholar]
  14. R.R. Kabirov, Gaisina, L.A., Sukhanova, N.V., Krasnova, V.V. Biotechnological aspects of the use of microscopic algae and cyanobacteria. International Journal of Experimental Education, 7, 128-129 (2016) [Google Scholar]
  15. T.I. Vishnevskaya, Aminina, N.M., Guruleva, O.N. Development of technology for producing the iodine-containing products from Laminaria japonica. TINRO Bulletin, 129, 163-169 (2001) [Google Scholar]
  16. V.N. Yaromsky, Wastewater treatment for food and processing enterprises. Minsk: BSU Publishing Center, 171 (2009) [Google Scholar]
  17. V.V. Ilyushin, Modern methods of wastewater treatment. Modern techniques and technologies, 2, 47-54 (2017) [Google Scholar]
  18. I.S. Zaitseva, Zaitseva, N.A., Voronina, A.S. Methods for intensifying the biological wastewater treatment in aeration tanks. Bulletin of the Kuzbass State Technical University, 2, 90-91 (2010) [Google Scholar]
  19. E.S. Gogina, Kulakov, A.A. Development of technology for modernization of artificial biological wastewater treatment facilities. MSSU Bulletin, 11, 204-209 (2012) [Google Scholar]
  20. N.N. Zhurkin, Alibekov, S.Ya. Improvement of mechanical wastewater treatment. Bulletin of the Volga State Technological University. Series: Forest. Ecology. Nature management, 1 (17), 92-97 (2013) [Google Scholar]
  21. V.E. Kamskaya, Chitosan: structure, properties and use. Scientific Review. Biological sciences, 6, 36-42 (2016) [Google Scholar]
  22. V.M. Bykova, Nemtsev, S.V. Raw materials sources and methods for producing the chitin and chitosan. Chitin and Chitosan. Production, properties and, application, 7-10 (2002) [Google Scholar]
  23. L.F. Gorovoy, Kosyakov, V.N. Sorption properties of chitin and its derivatives: Chitin, its structure and properties. Chitin and Chitosan. Production, properties and application. 217-246 (2002) [Google Scholar]
  24. A.I. Albulov, Frolova, M.A., Muradyan, Zh.Yu. Chitosan as a new natural enterosorbent for veterinary medicine and animal husbandry. All-Russian Research and Technological Institute of Biological Industry. P.6-8 (2007) [Google Scholar]
  25. P. M. De la Torre, Torrado, S. Interpolymer complexes of polyacrylic acid. Biomaterials. 24(8), 1459—1468 (2003) [Google Scholar]
  26. Song Peng-fei, Wang Rong-min, Wang Yun-pu. Preparation and properties of hydrogels based on chitosan and polyvinylpyrrolidone, sensitive to pH changes. J. Northw. Norm. Univ. Natur.Sci., 40, 53-55 (2004) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.