Open Access
E3S Web Conf.
Volume 320, 2021
Energy Systems Environmental Impacts (ESEI 2021)
Article Number 03008
Number of page(s) 8
Section Data Accuracy Analysis
Published online 09 November 2021
  1. S. P. Breloff, Dutta, A., Dai, F., Sinsel, E. W., Warren, C. M., Ning, X., & Wu, J. Z. (2019). Assessing work-related risk factors for musculoskeletal knee disorders in construction roofing tasks. Applied Ergonomics, 81. [Google Scholar]
  2. A. Setiawan, Akbar, S. R., Istambul, M. R., Agustian, Y., & Saudi, M. H. B. M. (2019). Effect of work safety and health knowledge on construction workers in cawang-tomang cengkareng toll road projects. Civil Engineering and Architecture, 7(3). [Google Scholar]
  3. T. Kaverzneva, Tarkhov, D., Uljanov, A., Senchenko, V., Pshenichnaya, C., & Alibekova, I. (2019). Criteria for ensuring acoustic safety in the assembly shops of machine-building enterprises. Paper presented at the IOP Conference Series: Materials Science and Engineering, 643(1) doi:10.1088/1757-899X/643/1/012119 [Google Scholar]
  4. O. A. Gubanova, Ivanov, A. Y., Krutolapov, A. S., Pelekh, M. T., & Gubanova, J. A. (2018). Reasons for the information processes utilization in the era of the platform industry 4.0. International Journal of Civil Engineering and Technology, 9(12), 43-47. [Google Scholar]
  5. B. Zhong, Pan, X., Love, P.E.D., Ding, L., Fang, W. Deep learning and network analysis: Classifying and visualizing accident narratives in construction (2020). Automation in Construction, 113, paper № 103089. [Google Scholar]
  6. M. Hafsia, Monacelli, E., Martin, H. Virtual reality simulator for construction workers (2018). ACM International Conference Proceeding Series. [Google Scholar]
  7. E. Boltyonkova, Andreev, A., & Doronin, A. (2019). Development of measures to ensure information security in structural division of the university. Paper presented at the E3S Web of Conferences, 140 doi:10.1051/e3sconf/201914008005 [Google Scholar]
  8. O. Golovina, Kazanci, C., Teizer, J., König, M. Using serious games in virtual reality for automated close call and contact collision analysis in construction safety (2019) Proceedings of the 36th International Symposium on Automation and Robotics in Construction, ISARC 2019, pP. 967-974. [Google Scholar]
  9. Abdul Aziz, F., Alsaeed, A.S.M.A., Sulaiman, S., Ariffin, M.K.A.M., Al-Arhabi, A.R.Y. Virtual Reality Training Platform in Onshore Pipeline (2020) Lecture Notes in Mechanical Engineering, pP. 207-216. [Google Scholar]
  10. D. Y. Zakharov, Klimova, I. V., Remishevskaya, K. V., & Tokareva, S. A. (2019). Calculation of the escalation probability as a solution to the inverse problem of predicting the reliability of the man-machine systems. Bezopasnost’ Truda v Promyshlennosti, 2019(11), 54–59. doi:10.24000/0409-2961-2019-11-54-59 [Google Scholar]
  11. K. Pykhtin, Simankina, T., Sharmanov, V., & Kopytova, A. (2017). Risk-based approach in valuation of workplace injury rate for transportation and construction industry. Paper presented at the IOP Conference Series: Earth and Environmental Science. [Google Scholar]
  12. M. O. Sanni-Anibire, Mahmoud, A. S., Hassanain, M. A., & Salami, B. A. (2020). A risk assessment approach for enhancing construction safety performance. Safety Science, 121, 15-29. [Google Scholar]
  13. E. Sugak, (2018). Methodological and organizational problems of professional risk management in construction. MATEC Web of Conferences. [Google Scholar]
  14. H.H. Goode, Machol, R.E., 1957. System engineering: an introduction to the design of large-scale systems. McGraw-Hill Book Co. New York [Google Scholar]
  15. V. Burlov, Andreev, A., & Gomazov, F. (2018). Mathematical model of human decision A methodological basis for the realization of the human factor in safety management. Paper presented at the Procedia Computer Science, 145 112–117. doi:10.1016/j.procs.2018.11.018 [Google Scholar]
  16. V. G. Burlov, Grobitski, A. M., & Grobitskaya, A. M. (2016). Construction management in terms of indicator of the successfully fulfilled production task. Magazine of Civil Engineering, 63(3), 77–91. doi:10.5862/MCE.63.5 [Google Scholar]
  17. V. G. Burlov, Gomazov, F. A., & Uvarova, A. O. (2018). Technology for managing the processes of ensuring labor safety at municipal waste processing enterprises. Paper presented at the Proceedings of the 2018 IEEE International Conference “Management of Municipal Waste as an Important Factor of Sustainable Urban Development”, WASTE 2018, 82–85. doi:10.1109/WASTE.2018.8554168 [Google Scholar]
  18. K. Kang, & Ryu, H. (2019). Predicting types of occupational accidents at construction sites in korea using random forest model. Safety Science, 120, 226–236. [Google Scholar]
  19. S. R. Mohandes, & Zhang, X. (2019). Towards the development of a comprehensive hybrid fuzzy-based occupational risk assessment model for construction workers. Safety Science, 115, 294-309. [Google Scholar]
  20. M. Nykänen, Puro, V., Tiikkaja, M., Kannisto, H., Lantto, E., Simpura, F., Uusitalo, J., Lukander, K., Räsänen, T., Teperi, A.-M. Evaluation of the efficacy of a virtual realitybased safety training and human factors training method: Study protocol for a randomised-controlled trial (2019) Injury Prevention. [Google Scholar]
  21. R.P. Zhang, Cheung, C.M., Lei, H. Applications of visualisation technology in construction safety training: A preliminary review (2019) Association of Researchers in Construction Management, ARCOM 2019 Proceedings of the 35th Annual Conference, pP. 396-405. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.