Open Access
E3S Web Conf.
Volume 321, 2021
XIII International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2021)
Article Number 01007
Number of page(s) 6
Section Fluid
Published online 11 November 2021
  1. H. A. Erlich et al. PCR technology. Springer, 1989. [Google Scholar]
  2. WHAT PCR DOES. “Polymerase chain reaction”. In: Journal of Investigative Dermatology 133 (2013). [Google Scholar]
  3. K. B. Mullis. “The unusual origin of the polymerase chain reaction”. In: Scientific American 262. (1990), pp. 56–65. [Google Scholar]
  4. G. J. Viljoen, L. H. Nel, and J. R. Crowther. Molecular diagnostic PCR hand-book. Springer Science & Business Media, 2005. [Google Scholar]
  5. J. J. Chen and K. T. Li. “Analysis of PCR Kinetics inside a Microfluidic DNA Amplification System”. In: Micromachines 9.2 (2018), p. 48. [Google Scholar]
  6. J. Kang et al. “Simulation and optimization of a flow-through micro PCR chip”. In: Nanotech (ed) NSTI Nanotech. Nanotech, Boston, Massachusetts (2006), pp. 585–588. [Google Scholar]
  7. V. E. Papadopoulos et al. “Comparison of continuous-flow and static-chamber μPCR devices through a computational study: the potential of flexible polymeric substrates”. In: Microfluidics and Nanofluidics 19.4 (2015), pp. 867–882. [Google Scholar]
  8. D. Moschou et al. “All-plastic, low-power, disposable, continuous-flow PCR chip with integrated microheaters for rapid DNA amplification”. In: Sensors and Actuators B: Chemical 199(2014), pp. 470–478. [Google Scholar]
  9. J. Lee et al. “The effect of dilution on the dispersion with respect to microfluidic channel geometries”. In: International Journal of Heat and Mass Transfer 104(2017), pp. 813–818. [Google Scholar]
  10. C. D. Ahrberg, A. Manz, and B. G. Chung. “Polymerase chain reaction in microfluidic devices”. In: Lab on a Chip 16.20 (2016), pp. 3866–3884. [Google Scholar]
  11. A. Manz, N. Graber, and H. Widmer. “Miniaturized total chemical analysis systems: a novel concept for chemical sensing”. In:Sensors and actuators B: Chemical 1.1-6 (1990), pp. 244–248. [Google Scholar]
  12. Y. S. Shin et al. “PDMS-based micro PCR chip with parylene coating”. In: Journal of Micromechanics and Microengineering 13.5 (2003), p. 768. [Google Scholar]
  13. A. F. Sauer-Budge et al. “Low cost and manufacturable complete microTAS for detecting bacteria”. In: Lab on a Chip 9.19 (2009), pp. 2803–2810. [Google Scholar]
  14. A. K. Yetisen and L. R. Volpatti. “Patent protection and licensing in microfluidics”. In: Lab on a Chip 14.13 (2014), pp. 2217–2225. [Google Scholar]
  15. S. W. Kim and K. Mi-Ree. High-speed real-time PCR device based on lab-on-a-chip for detecting food-borne bacteria to agrifood, and methods for detecting food-borne bacteria to agrifood using the same. US Patent 10, 245, 590. Apr. 2019. [Google Scholar]
  16. M. Le Berre. Microfluidic sample chip, assay system using such a chip, and pcr method for detecting dna sequences. US Patent App. 16/471,500. Dec. 2019. [Google Scholar]
  17. M. Le Berre, A. Plecis, and W. Minnella. Thermalizing microfluidic chip employing variable temperature cycles, system using such a chip and pcr method for detecting dna sequences. US Patent App. 16/471,517. Jan. 2020. [Google Scholar]
  18. Y. Zhang and H.-R. Jiang. “A review on continuous-flow microfluidic PCR in droplets: Advances, challenges and future”. In: Analytica chimica acta 914(2016), pp. 7–16. [Google Scholar]
  19. S.-Y. Ma et al. “Peanut detection using droplet microfluidic polymerase chain reaction device”. In: Journal of Sensors 2019 (2019). [Google Scholar]
  20. W. Wang et al. “Droplet-based micro oscillating-flow PCR chip”. In: Journal of Micromechanics and Microengineering 15.8 (2005), p. 1369. [Google Scholar]
  21. J. Shi, S. Xiang, and X. Song. Droplet digital pcr chip. US Patent App. 16/465,438. Jan. 2020. [Google Scholar]
  22. E. M. Elnifro et al. “Multiplex PCR: optimization and application in diagnostic virology”. In: Clinical microbiology reviews 13.4 (2000), pp. 559–570. [Google Scholar]
  23. S. Yang and R. E. Rothman. “PCR-based diagnostics for infectious diseases: uses, limitations, and future applications in acute-care settings”. In: The Lancet infectious diseases 4.6 (2004), pp. 337–348. [Google Scholar]
  24. S. Thomas, R. L. Orozco, and T. Ameel. “Thermal gradient continuous-flow PCR: a guide to design”. In: Microfluidics and nanofluidics 17.6 (2014), pp. 1039–1051. [Google Scholar]
  25. J. J. Chen, C. M. Shen, and Y. W. Ko. “Analytical study of a microfluidic DNA amplification chip using water cooling effect”. In: Biomedical microdevices 15.2 (2013), pp. 261–278. [Google Scholar]
  26. Q. Cao, M.-C. Kim, and C. Klapperich. “Plastic microfluidic chip for continuous-flow polymerase chain reaction: Simulations and experiments”. In: Biotechnology journal 6.2 (2011), pp. 177–184. [Google Scholar]
  27. Z. Khatir and H. Thompson. “CFD-Enabled Design Optimisation of Industrial Flows-Theory and Practice”. In: International Journal of Computational Fluid Dynamics 33.6-7 (2019), pp. 235–236. [Google Scholar]
  28. D. Domingo et al. “Using ice cores and Gaussian process emulation to recover changes in the Greenland Ice Sheet during the Last Inter-glacial”. In: Journal of Geophysical Research: Earth Surface 125.5 (2020), e2019JF005237. [Google Scholar]
  29. C. Gonzáalez Nîno et al. “Computational fluid dynamic enabled design optimisation of miniaturised continuous oscillatory baffled reactors in chemical processing”. In: International Journal of Computational Fluid Dynamics 33.6-7 (2019), pp. 317–331. [Google Scholar]
  30. R. T. Haftka, D. Villanueva, and A. Chaudhuri. “Parallel surrogate-assisted global optimization with expensive functions–a survey”. In: Structural and Multidisciplinary Optimization 54.1 (2016), pp. 3–13. [Google Scholar]
  31. H. S. Hamad et al. “Computational fluid dynamics analysis and optimisation of polymerase chain reaction thermal flow systems”. In:Applied Thermal Engineering 183 (2021), p. 116122. [Google Scholar]
  32. H. W. Lee et al. “Neuro-genetic optimization of temperature control for a continuous flow polymerase chain reaction microdevice”. In: (2007). [Google Scholar]
  33. F. Zagklavara et al. “Numerical Modelling and Analysis of a Microfluidic PCR Device”. In: (). [Google Scholar]
  34. Y. Wang. “Solving incompressible Navier-Stokes equations on heterogeneous parallel architectures”. PhD thesis. 2015. [Google Scholar]
  35. Julie. Surrogate Model Optimization Toolbox, MATLAB Central File Exchange. 2012. url: (accessed: 14. 05.2020). [Google Scholar]
  36. T. Wiens. Radial Basis Function Network. 2014. url: (accessed: 14. 05.2020). [Google Scholar]
  37. G. A. Barnett, N. Flyer, and L. J. Wicker. “An RBF-FD polynomial method based on polyharmonic splines for the Navier-Stokes equations: Comparisons on different node layouts”. In: arXiv preprint arXiv: 1509.02615 (2015). [Google Scholar]
  38. R. Beatson, M. J. D. Powell, and A. Tan. “Fast evaluation of polyharmonic splines in three dimensions”. In: IMA Journal of Numerical Analysis 27.3 (2007), pp. 427–450. [Google Scholar]
  39. MathWorks. Genetic Algorithm. 2021. url: (accessed: 06.01.2021). [Google Scholar]
  40. EPSRC. EPSRC Centre for Doctoral Training in Fluid Dynamics at Leeds. 2021. url: (accessed: 25. 02. 2021). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.