Open Access
E3S Web Conf.
Volume 321, 2021
XIII International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2021)
Article Number 01018
Number of page(s) 6
Section Fluid
Published online 11 November 2021
  1. Al_Ismaily, Use borehole image log technique to estimate Mishrif Reservoir characterization in Buzurgan oilfield. Unpolished thesis, Ph.D. Science College, University of Basrah, 206p, (2017). [Google Scholar]
  2. Di Primio R, Dieckmann V, Mills N. PVT and phase behaviour analysis in petroleum exploration. Organic Geochemistry;29(1–3):207-222, (1998). [Google Scholar]
  3. Mansour E, Farag A, El-Dars F, Desouky S, Batanoni M, Mahmoud M. Predicting PVT properties of Egyptian crude oils by a modified soave–Redlich– Kowng equation of state. Egyptian Journal of Petroleum. 22(1): 137-148, (2013). [Google Scholar]
  4. Aplin, A. C., Macleod, G., Larter, S. R., Pedersen, K. S., Sorensen, H., & Booth, T., Combined use of confocal laser scanning microscopy and PVT simulation for estimating the composition and physical properties of petroleum in fluid inclusions. Marine and Petroleum Geology, 16, 97–110 (1999). [Google Scholar]
  5. Aplin, A. C., Larter, S. C., Bigge, M. A., Macleod, G., Swarbrick, R. E., & Grunberger, D. (2000). PVTX history of the North Sea’s Judy oilfield. Journal of Geochemical Exploration, 69-70, 641–644 (2000). [Google Scholar]
  6. Wei Yan1, Farhad Varzandeh 2, Erling H. StenbyPVT modeling of reservoir fluids using PC-SAFT EoS and Soave-BWR EoS, Fluid Phase Equilibria 386, 96-124, (2015). [Google Scholar]
  7. Aydelotte, R., Alboudwarej, H., Dindoruk, B., Qi, Y., McCreless, J., Nighswander, J., Kunt, T.A., Lucas-Clements, D., Ormerod, L., Hollingsworth, J., Mao, M., Delivering a PRODML Data-Exchange Standard for PVT and Fluid Characterization Data for the Full Lifecycle of a Reservoir. SPE-173425-MS. (2015). [Google Scholar]
  8. Osman, E., Abdel-Wahhab, O.A., Al-Marhoun, M., Prediction of Oil Properties Using Neural Networks. Society of Petroleum Engineer. SPE-68233-MS. (2001). [Google Scholar]
  9. Goda, H.M., Shokir, E.M., Eissa, M., Fattah, K.A., Sayyouh, M.H., Prediction of the PVT Data Using Neural Network Computing Theory. SPE-85650-MS. (2003). [Google Scholar]
  10. Numbere, O.G., Azuibuike, I.I., Ikiensikimama, S.S., Bubble Point Pressure Prediction Model for Niger Delta Crude Using Artificial Neural Network Approach. SPE-167586-MS. (2013). [Google Scholar]
  11. Ramirez, A.M., Valle, G.A., Romero, F., Jaimes, M., 2017. Prediction of PVT Properties in Crude Oil Using Machine Learning Techniques MLT. SPE-185536-MS (2017). [Google Scholar]
  12. Yang, Q., Jin, B., Banerjee, D., Nasrabadi, H., Direct visualization and molecular simulation of dewpoint pressure of a confined fluid in sub-10 nm slit pores. Fuel 235, 1216–1223. (2019a). [Google Scholar]
  13. Sinha, U., Dindoruk, B., Soliman, M., Machine learning augmented dead oil viscosity model for all oil types. J. Petrol. Sci. Eng. 195, 107603. (2020). [Google Scholar]
  14. Pouya Hosseinif, Mehdi Assareh, Cyrus GhotbiDeveloping a new model for the determination of petroleum fraction PC-SAFT parameters to model reservoir fluids, Fluid Phase Equilibria 412, 145-157, (2016). [Google Scholar]
  15. Ronald ET, Rogers JB. Applied Petroleum Reservoir Engineering. New York: Pearson Education Incorporated.7-10, (2015). [Google Scholar]
  16. Aniedi B. Usungedo and Julius U. Akpabio, Evaluating the Challenges in Pressure –Volume –Temperature (PVT) Analysis of Gas Condensate Reservoirs, Journal of Engineering Research and Reports, 16(3): 13-18, (2020). [Google Scholar]
  17. Walsh MP, Lake LW. A Generalized Approach to Primary Hydrocarbon Recovery. Elsevier,Amsterdam.;3-15, (2003). [Google Scholar]
  18. Vazquez M, Beggs HD. Correlations for fluid physical property prediction. In: SPE Annual Fall Technical Conference and Exhibition. Society of Petroleum Engineers; (1977). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.