Open Access
E3S Web Conf.
Volume 321, 2021
XIII International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2021)
Article Number 02002
Number of page(s) 6
Section Energy
Published online 11 November 2021
  1. M. Lackner, F. Winter, A. K. Agarwal (Eds), Handbook of Combustion (Wiley, Hoboken, 2010) [Google Scholar]
  2. I. Bilousov, M. Bulgakov, V. Savchuk, Modern Marine Internal Combustion Engines (Springer, Berlin, 2020) [Google Scholar]
  3. S. Iqbal, A. C. Benim, S. Fischer, F. Joos, D. Kluß, A. Wiedermann, “Experimental and numerical analysis of natural bio and syngas swirl flames in a model gas turbine combustor”, Journal of Thermal Science 25(5) (2016) 460–469 [Google Scholar]
  4. A. C. Benim, B. Epple, B. Krohmer, “Modelling of pulverised coal combustion by a Eulerian-Eulerian two-phase flow formulation”, Progress in Computational Fluid Dynamics – An International Journal 5(6) (2005) 345–361 [Google Scholar]
  5. B. Epple, W. Fiveland, B. Krohmer, G. Richards, A. C. Benim, “Assessment of two-phase flow models for the simulation of pulverized coal combustion”, International Journal of Energy for a Clean Environment 6(3) (2005) 267–287 [Google Scholar]
  6. B. Epple. R. Leithner, W. Linzer, H. Walter (Eds), Simulation von Kraftwerken und Feuerungen (Springer, Vienna, 2012) [Google Scholar]
  7. C. Higman, M. van der Burgt, Gasification, 2nd ed (Elsevier, Amsterdam, 2008) [Google Scholar]
  8. R. Ehrlich, Renewable Energy (CRC Press, Boca Raton, 2013) [Google Scholar]
  9. M. S. Tahat, A. C. Benim, “Experimental analysis on thermophysical properties of Al2O3/CuO hybrid nano fluid with its effects on flat plate solar collector”, Defect and Diffusion Forum 374 (2017)148–156 [Google Scholar]
  10. E. DuBois, A. Mercier (Eds), Energy Recovery (Nova Science Publishers, New York, 2009) [Google Scholar]
  11. S. Bhattacharyya, H. Chattopadhyay, A. C. Benim, “Heat transfer enhancement of laminar flow of ethylene glycol through a square channel fitted with angular cut wavy strip”, Procedia Engineering 157 (2016) 19–28 [Google Scholar]
  12. S. Bhattacharyya, A. C. Benim, H. Chattopadhyay, A. Banerjee, “Experimental investigation of heat transfer performance of corrugated tube with spring tape inserts”, Experimental Heat Transfer 32(5) (2019) 411–425 [Google Scholar]
  13. L. Rosendahl (Ed), Biomass Combustion Science, Technology and Engineering (Elsevier, Amsterdam,2013) [Google Scholar]
  14. M. Kaltschmitt, H. Hartmann, H. Hofbauer, (Eds), Energie aus Biomasse (Springer, Berlin, 2016) [Google Scholar]
  15. A. I. Moreno, R. Font, J. A. Conesa, Combustion of furniture wood waste and solid wood: Kinetic study and evolution of pollutants, Fuel 192 (2017)169–177 [Google Scholar]
  16. A. Hepbasli, “A study on estimating the energetic and exergetic prices of various residential energy sources”, Energy Buildings 40(3) (2008) 308–315 [Google Scholar]
  17. E. K. Vakkilainen, Steam Generation from Biomass (Elsevier, Amsterdam, 2017) [Google Scholar]
  18. R. Bauer, M. Gölles, T. Brunner, N. Dourdoumas, I. Obernberger, “Modelling of grate combustion in a medium scale biomass furnace for control purposes”, Biomass Bioenergy 34(4) (2010)417–427 [Google Scholar]
  19. U. Drescher, D. Brüggemann, “Fluid selection for the organic Rankine cycle (ORC) in biomass power plants”, Appl. Thermal Eng. 27(1) (2007) 223–228 [Google Scholar]
  20. H. Liu, Y. Shao, J. Li, “A biomass-fired micro-scale CHP system with organic Rankine cycle (ORC) – Thermodynamic modelling studies”, Biomass and Bioenergy 35(9) (2011) 3985–3994 [Google Scholar]
  21. E. Podesser, “Electricity production in rural villages with a biomass Stirling engine”, Renewable Energy 16(1–4) (1999) 1949–1052 [Google Scholar]
  22. H. Julian Goldsmid, The Physics of Thermoelectric Energy Conversion (Morgan & Claypool Publishers, San Rafael, 2017) [Google Scholar]
  23. K. F. Mustafa, S. Abdullah, M. Z. Abdullah, K. Sopian, “A review of combustion-driven thermoelectric (TE) and thermophotovoltaic (TPV) power systems ”, Renewable and Sustainable Energy Reviews 71 (2017) 572–584 [Google Scholar]
  24. M. Alptekin, T. Calisir, S. Baskaya, “Design and experimental investigation of a thermoelectric self- powered heating system”, Energy Conversion and Management 146 (2017) 244–252 [Google Scholar]
  25. K. Qiu, A. C. Hayden, “Development of thermoelectric self-powered heating equipment”, J. Electronic Materials 40(5) (2010) 606–610 [Google Scholar]
  26. X. F. Zheng, C. X. Liu, R. Boukhanouf, Y. Y. Yan, W. Z. Li, “Experimental study of a domestic thermoelectric cogeneration system”, Applied Thermal Engineering 62(1) (2014) 69–79 [Google Scholar]
  27. X. F. Zheng, Y. Y. Yan, K. Simpson, “A potential candidate for the sustainable and reliable domestic energy generation–Thermoelectric cogeneration system” Appl. Thermal Eng. 53(2) (2013) 305–311 [Google Scholar]
  28. M. Borcuch, S. Gumuła, M. Musiał, K.Wojciechowski, “The analysis of heat exchangers geometry in thermoelectric generators for waste heat utilization”, E3S Web of Conf. 10 (2016) 00003 [Google Scholar]
  29. S.-R. Yan, H. Moria, S. Asaadi, H. Sadighi Dizaji, S. Khalilarya, K. Jermsittiparsert, “Performance and profit analysis of thermoelectric power generators mounted on channels with different cross-sectional shapes”, Appl. Thermal Eng. 176 (2020) 115455 [Google Scholar]
  30. W.-H. Chen, Y.-X. Lin, Y.-B. Chiou, Y.-L. Lin, X.- D. Wang, “A computational fluid dynamics (CFD) approach of thermoelectric generator (TEG) for power generation”, Applied Thermal Engineering, 173 (2020) 115203 [Google Scholar]
  31. D. Luo, R.Wang, W. Yu, Z. Sun, X. Meng, “Modelling and simulation study of a converging thermoelectric generator for engine waste heat recovery”, Appl. Thermal Eng. 153 (2019) 837–847 [Google Scholar]
  32. S. Huang, X. Xu, “Parametric optimization of thermoelectric generators for waste heat recovery”, J. Electronic Materials 45(10) (2016) 5213–5222 [Google Scholar]
  33. Thermonamic Electronics (Jiangxi) Corp., Ltd. [Online]–24156-2.4-English.pdf [Google Scholar]
  34. E. Aslan, I. Taymaz, A. C. Benim, “Investigation of LBM curved boundary treatments for unsteady flows”, European Journal of Mechanics B/Fluids 51 (2015) 68–74 [Google Scholar]
  35. A. C. Benim. M. Cagan, A. Nahavandi, E.Pasqualotto, “RANS predictions of turbulent flow past a circular cylinder over the critical regime”, Proc. 5th IASME/WSEAS International Conference on Fluid Mechanics and Aerodynamics, Athens, Greece, August 25–27, 2007 (2007) 232–237 [Google Scholar]
  36. VDI Heat Atlas (Springer, Berlin. 2010) [Google Scholar]
  37. T. F. Smith, Z. F. Shen, J. N. Friedman, “Evaluation of coefficients for the weighted sum of gray gases model”, J. Heat Transfer 104(4) (1982) 602–608 [Google Scholar]
  38. Y.-S. Chen, K.-H. Chien, Y.-S. Tseng, Y.-K-. Chan,“Determination of optimized rectangular spreader thickness for lower thermal spreading resistance”, J. Electronic Packaging 131(1) (2009) 011004 [Google Scholar]
  39. C. Audet, S. Le Digabel, C. Tribes and V. Rochon Montplaisir. The NOMAD project. Software available at [Google Scholar]
  40. C. Audet and J. E. Dennis, Jr., “Mesh adaptive direct search algorithms for constrained optimization”, SIAM J. on Optimization 17(1) (2006) 188–217 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.