Open Access
Issue
E3S Web Conf.
Volume 321, 2021
XIII International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2021)
Article Number 02014
Number of page(s) 14
Section Energy
DOI https://doi.org/10.1051/e3sconf/202132102014
Published online 11 November 2021
  1. R. Moineau, “A New Capsulism,” University of Paris, 1930. [Google Scholar]
  2. J. Chen, H. Liu, F. Wang, G. Shi, G. Cao, and H. Wu, “Journal of Petroleum Science and Engineering Numerical prediction on volumetric ef fi ciency of progressive cavity pump with fl uid – solid interaction model,” J. Pet. Sci. Eng., vol. 109, pp. 12–17, 2013, doi: 10.1016/j.petrol.2013.08.019. [Google Scholar]
  3. B. Wu and X. Li, “The special successful PCP applications in heavy oilfield,” Soc. Pet. Eng. - Progress. Cavity Pumps Conf. 2010, no. September, pp. 51–60, 2010, doi: 10.2118/136817-ms. [Google Scholar]
  4. G. Vetter and W. Wolfgang, “Understand Progressing Cavity Pumps Characteristics and Avoid Abrasive Wear.” p. 14, 1995. [Google Scholar]
  5. A.-S. Elisse, “Analysis and Prediction of Fluid Flow Behavior in Progressing Cavity Pumps,” vol. 139, no. December 2017, pp. 1–11, 2018, doi: 10.1115/1.4037057. [Google Scholar]
  6. S. Noonan, Progressing cavity pumps, vol. 356. 1996. [Google Scholar]
  7. C. Wittrisch, PROGRESSING CAVITY PUMPS. 2013. [Google Scholar]
  8. I. R. Belcher, “An investigation into the operating characteristics of the progressive cavity pump,” Cranfield University, 1991. [Google Scholar]
  9. A. Olivet, P. Epm, J. Gamboa, F. Kenyery, and U. S. Bolívar, “SPE 77730 Experimental Study of Two-Phase Pumping in a Progressive Cavity Pump Metal to Metal,” 2002. [Google Scholar]
  10. J. Gamboa, J. Iglesias, and P. Gonzalez, “Understanding the Performance of a Progressive Cavity Pump with a Metallic Stator,” 2002. [Google Scholar]
  11. S. F. A. Andrade, J. V Valério, and M. S. Carvalho, “Asymptotic Model of the 3D Flow in a Progressive Cavity Pump.” [Google Scholar]
  12. E. E. Paladino, J. A. Lima, P. A. S. Pessoa, and R. F. C. Almeida, “Journal of Petroleum Science and Engineering A computational model for the fl ow within rigid stator progressing cavity pumps,” J. Pet. Sci. Eng., vol. 78, no. 1, pp. 178–192, 2011, doi: 10.1016/j.petrol.2011.05.008. [Google Scholar]
  13. J. A. De Lima, “A SIMPLIFIED MODEL FOR THE FLOW IN A PROGRESSIVE CAVITY PUMP,” no. 2003, 2009. [Google Scholar]
  14. P. A. S. Pessoa, “Simulação Computacional do Escoamento em Bombas de Cavidades Progressivas,” Universidade Federal do Rio Grande do Norte, 2009. [Google Scholar]
  15. J. Chen, H. Liu, F. Wang, G. Shi, G. Cao, and H. Wu, “Numerical prediction on volumetric efficiency of progressive cavity pump with fluid-solid interaction model,” J. Pet. Sci. Eng., vol. 109, pp. 12–17, 2013, doi: 10.1016/j.petrol.2013.08.019. [Google Scholar]
  16. T. Nguyen, E. Al-safran, A. Saasen, and O. Nes, “Journal of Petroleum Science and Engineering Modeling the design and performance of progressing cavity pump using 3-D vector approach,” J. Pet. Sci. Eng., vol. 122, pp. 180–186, 2014, doi: 10.1016/j.petrol.2014.07.009. [Google Scholar]
  17. T. Nguyen, H. Tu, E. Al-safran, and A. Saasen, “Journal of Petroleum Science and Engineering Simulation of single-phase liquid fl ow in Progressing Cavity Pump,” 2016, doi: 10.1016/j.petrol.2016.09.037. [Google Scholar]
  18. K. R. Mrinal and A. Samad, “CFD SIMULATION OF FLOW THROUGH PROGRESSIVE CAVITY PUMP.” [Google Scholar]
  19. E. Al-Safran, A. Aql, and T. Nguyen, “Analysis and Prediction of Fluid Flow Behavior in Progressing Cavity Pumps,” J. Fluids Eng. Trans. ASME, vol. 139, no. 12, pp. 1–11, 2017, doi: 10.1115/1.4037057. [Google Scholar]
  20. J. P. Valdés et al., “Comparative analysis of an electrical submersible pump’s performance handling viscous Newtonian and non- Newtonian fluids through experimental and CFD approaches,” J. Pet. Sci. Eng., vol. 187, 2020, doi: 10.1016/j.petrol.2019.106749. [Google Scholar]
  21. J. P. Valdes, “Experimental and Numerical Analysis of an Electrical Submersible Pump’s Performance Handling Non-Newtonian Complex Flows,” Universidad de los Andes, 2019. [Google Scholar]
  22. J. Gamboa, A. Olivet, G. D. S. C. A, S. Espin, and U. S. Bolívar, “SPE 84137 New Approach for Modeling Progressive Cavity Pumps Performance,” 2003. [Google Scholar]
  23. P. Laws, J. S. Saini, and A. Kumar, “A Study on OpenFOAM’s Overset Mesh Support Using Flow Past NACA 0018 Airfoil,” no. July, pp. 1–18, 2019, doi: 10.20944/preprints201907.0217.v1. [Google Scholar]
  24. X. Qiu and M. R. Anderson, “Analysis and Validation of a Unified Slip Factor Model for Impellers at Design and,” vol. 133, no. October, pp. 1–9, 2011, doi: 10.1115/1.4003022. [Google Scholar]
  25. M. Peric and S. Ferguson, “The advantage of polyhedral meshes,” Dynamics, vol. 24, p. 45, 2005. [Google Scholar]
  26. J. P. Valdes, D. Becerra, D. Rozo, A. Cediel, F. Torres, and M. Asuaje, “Comparative analysis of an electrical submersible Pump’s performance handling viscous Newtonian and non-Newtonian fluids through experimental and CFD approaches,” J. Pet. Sci. Eng., no. xxxx, 2019. [Google Scholar]
  27. J. H. Ferziger, M. Peric, and A. Leonard, “Computational Methods for Fluid Dynamics,” Phys. Today, vol. 50, no. 3, pp. 80–84, 1997, doi: 10.1063/1.881751. [Google Scholar]
  28. B. Andersson, R. Andersson, L. Hakansson, M. Mortensen, and B. G. M. van Wachem, Computational fluid dynamics for engineers. 2012. [Google Scholar]
  29. E. E. Paladino, J. A. Lima, R. F. C. Almeida, and U. Dem, “SPE 114110 Computational Modeling of the Three-Dimensional Flow in a Metallic Stator Progressing Cavity Pump,” no. 2003, 2008. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.