Open Access
Issue
E3S Web Conf.
Volume 321, 2021
XIII International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2021)
Article Number 03001
Number of page(s) 7
Section Modeling and Simulation
DOI https://doi.org/10.1051/e3sconf/202132103001
Published online 11 November 2021
  1. JCGM, “Evaluation of measurement data – Guide to the expression of uncertainty in measurement,” 2008. https://www.bipm.org/en/publications/guides/gum.html (accessed Jan. 08, 2021). [Google Scholar]
  2. J. Han, S. Dutta, and S. V. Ekkad, Gas Turbine Heat Transfer and Cooling Technology. CRC Press – Taylor & Francis Group, 2012. [Google Scholar]
  3. T. A. Oliver, N. Malaya, R. Ulerich, and R. D. Moser, “Estimating uncertainties in statistics computed from direct numerical simulation,” Phys. Fluids, vol. 26, no. 3, p. 035101, Mar. 2014 [CrossRef] [Google Scholar]
  4. M. Carnevale, F. Montomoli, A. D’Ammaro, S. Salvadori, and F. Martelli, “Uncertainty Quantification: A Stochastic Method for Heat Transfer Prediction Using LES,” J. Turbomach., vol. 135, Jun. 2013. [CrossRef] [Google Scholar]
  5. K. Menberg, Y. Heo, and R. Choudhary, “Sensitivity analysis methods for building energy models: Comparing computational costs and extractable information,” Energy Build., vol. 133, pp. 433–445, Dec. 2016. [CrossRef] [Google Scholar]
  6. F. Uhía, A. Campo, and J. Fernández-Seara, “Uncertainty analysis for experimental heat transfer data obtained by the Wilson plot method: Application to condensation on horizontal plain tubes,” Therm. Sci., vol. 17, Jan. 2013. [Google Scholar]
  7. G. N. Coleman, J. Kim, and R. D. Moser, “A numerical study of turbulent supersonic isothermalwall channel flow,” J. Fluid Mech., vol. 305, pp. 159–183, Dec. 1995. [CrossRef] [Google Scholar]
  8. K. Wójs and T. Tietze, “Effects of the temperature interference on the results obtained using the Wilson plot technique,” Heat Mass Transf., vol. 33, no. 3, pp. 241–245, Dec. 1997. [CrossRef] [Google Scholar]
  9. A. Håkansson, “An investigation of uncertainties in determining convective heat transfer during immersion frying using the general uncertainty management framework,” J. Food Eng., vol. 263, pp. 424–436, Dec. 2019. [CrossRef] [Google Scholar]
  10. S. G. Penoncello, Thermal Energy Systems: Design and Analysis. CRC Press - Taylor & Francis Group, 2015. [Google Scholar]
  11. D. Taler, “Mathematical modeling and control of plate fin and tube heat exchangers,” Energy Convers. Manag., vol. 96, pp. 452–462, May 2015. [CrossRef] [Google Scholar]
  12. M. Trojan and D. Taler, “Thermal simulation of superheaters taking into account the processes occurring on the side of the steam and flue gas,” Fuel, vol. 150, pp. 75–87, Jun. 2015. [CrossRef] [Google Scholar]
  13. F. W. Dittus and L. M. K. Boelter, “Heat transfer in automobile radiators of the tubular type,” Int. Commun. Heat Mass Transf., vol. 12, no. 1, pp. 3–22, Jan. 1985. [CrossRef] [Google Scholar]
  14. M. David, A. Toutant, and F. Bataille, “Numerical development of heat transfer correlation in asymmetrically heated turbulent channel flow,” Int. J. Heat Mass Transf., vol. 164, p. 120599, Jan. 2021. [CrossRef] [Google Scholar]
  15. E. N. Sieder and G. E. Tate, “Heat Transfer and Pressure Drop of Liquids in Tubes,” Ind. Eng. Chem., vol. 28, no. 12, pp. 1429–1435, Dec. 1936. [CrossRef] [Google Scholar]
  16. A. P. Colburn, “A method of correlating forced convection heat-transfer data and a comparison with fluid friction,” Int. J. Heat Mass Transf., vol. 7, no. 12, pp. 1359–1384, Dec. 1964. [CrossRef] [Google Scholar]
  17. E. Battista and H. C. Perkins, “Turbulent heat and momentum transfer in a square duct with moderate property variations,” Int. J. Heat Mass Transf., vol. 13, no. 6, pp. 1063–1065, Jun. 1970. [CrossRef] [Google Scholar]
  18. J. Ma, Longjian. Li, Y. Huang, and X. Liu, “Experimental studies on single-phase flow and heat transfer in a narrow rectangular channel,” Nucl. Eng. Des., vol. 241, no. 8, pp. 2865–2873, Aug. 2011. [CrossRef] [Google Scholar]
  19. V. Gnielinski, “On heat transfer in tubes,” Int. J. Heat Mass Transf., vol. 63, pp. 134–140, Aug. 2013. [CrossRef] [Google Scholar]
  20. D. Taler, “Simple power-type heat transfer correlations for turbulent pipe flow in tubes,” J. Therm. Sci., vol. 26, no. 4, pp. 339–348, Aug. 2017. [CrossRef] [Google Scholar]
  21. E. Driscoll and D. Landrum, “Uncertainty Analysis on Heat Transfer Correlations for RP-1 Fuel in Copper Tubing,” NTRS - NASA Technical Reports Server, 2004. [Google Scholar]
  22. V. K. Scariot, G. M. Hobold, and A. K. da Silva, “On the sensitivity to convective heat transfer correlation uncertainties in supercritical fluids,” Appl. Therm. Eng., vol. 145, pp. 123–132, Dec. 2018. [CrossRef] [Google Scholar]
  23. D. Dupuy, A. Toutant, and F. Bataille, “A posteriori tests of subgrid-scale models in an isothermal turbulent channel flow,” Phys. Fluids, vol. 31, no. 4, p. 045105, Apr. 2019. [CrossRef] [Google Scholar]
  24. D. Dupuy, A. Toutant, and F. Bataille, “A posteriori tests of subgrid-scale models in strongly anisothermal turbulent flows,” Phys. Fluids, vol. 31, no. 6, p. 065113, Jun. 2019. [CrossRef] [Google Scholar]
  25. D. Dupuy, A. Toutant, and F. Bataille, “A priori tests of subgrid-scale models in an anisothermal turbulent channel flow at low mach number,” Int. J. Therm. Sci., vol. 145, p. 105999, Nov. 2019. [CrossRef] [Google Scholar]
  26. D. A. Nield, “Forced convection in a parallel plate channel with asymmetric heating,” Int. J. Heat Mass Transf., vol. 47, no. 25, pp. 5609–5612, Dec. 2004. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.