Open Access
Issue
E3S Web Conf.
Volume 321, 2021
XIII International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2021)
Article Number 04002
Number of page(s) 9
Section Heat and Mass Transfert
DOI https://doi.org/10.1051/e3sconf/202132104002
Published online 11 November 2021
  1. M. R. Krishnamurthy, B. C. Prasannakumara, B. J. Gireesha, and R. S. R. Gorla, Effect of viscous dissipation on hydromagnetic fluid flow and heat transfer of nanofluid over an exponentially stretching sheet with fluid-particle suspension, Cogent Math., 2(1), 1050973, (2015) doi: 10.1080/23311835.2015.1050973 [Google Scholar]
  2. S. Naramgari and C. Sulochana, MHD flow of dusty nanofluid over a stretching surface with volume fraction of dust particles, Ain Shams Eng. J. 7(2), 709–716, (2016) doi: 10.1016/j.asej.2015.05.015 [Google Scholar]
  3. C. Sulochana and N. Sandeep, Flow and heat transfer behavior of MHD dusty nanofluid past a porous stretching/shrinking cylinder at different temperatures, J. Appl. Fluid Mech., 9(2), 543–553, (2016) doi: 10.18869/acadpub.jafm.68.225.24847 [Google Scholar]
  4. B. C. Prasannakumara, N. S. Shashikumar, and P. Venkatesh, Boundary Layer Flow and Heat Transfer of fluid particle suspension with nanoparticles over a nonlinear stretching sheet embedded in a porous medium,” Nonlinear Eng., 6(3), 179–190, (2017) doi: 10.1515/nleng-2017-0004 [Google Scholar]
  5. B. J. Gireesha, B. Mahanthesh, and K. L. Krupalakshmi, Hall effect on two-phase radiated flow of magneto-dusty-nanoliquid with irregular heat generation /consumption Results Phys., 7, 4340–4348 (2017) doi: 10.1016/j.rinp.2017.08.040 [Google Scholar]
  6. Z. A. S. Raizah, Natural convection of dusty hybrid nanofluids in an enclosure including two oriented heated fins,” Appl. Sci., 9(13) (2019) doi: 10.3390/app9132673 [Google Scholar]
  7. H. Kaneez, J. Alebraheem, A. Elmoasry, R. S. Saif, and M. Nawaz, Numerical investigation on transport of momenta and energy in micropolar fluid suspended with dusty, mono and hybrid nano-structures, AIP Adv., 10 (4) 4, 2020, doi: 10.1063/5.0003042. [Google Scholar]
  8. M. Radhika, R. J. Punith Gowda, R. Naveenkumar, Siddabasappa, and B. C. Prasannakumara, Heat transfer in dusty fluid with suspended hybrid nanoparticles over a melting surface, Heat Transf., 50, 2159-2167 (2021) doi: 10.1002/htj.21972 [Google Scholar]
  9. T. Hayat, R. Naz, and A. Alsaedi, Effects of slip condition in the channel flow of nanofluid, J. Comput. Theor. Nanosci., 11(12) 2618–2624 (2014) doi: 10.1166/jctn.2014.3686 [Google Scholar]
  10. M. H. Kamel, I. M. Eldesoky, B. M. Maher, and R. M. Abumandour, Slip Effects on Peristaltic Transport of a Particle-Fluid Suspension in a Planar Channel, Appl. Bionics Biomech., 2015 (2015) doi: 10.1155/2015/703574 [Google Scholar]
  11. M. Guria, Effect of slip condition on vertical channel flow in the presence of radiation, Int. J. Appl. Mech. Eng., 21(2) 341–358 (2016) doi: 10.1515/ijame-2016-0021 [Google Scholar]
  12. P. Panaseti and G. C. Georgiou, Viscoplastic flow development in a channel with slip along one wall, J. non-Newton. Fluid Mech., 248 8–22 (2017) doi: 10.1016/j.jnnfm.2017.08.008 [Google Scholar]
  13. K. Pravin Kashyap, O. Ojjela, and S. K. Das, MHD slip flow of chemically reacting UCM fluid through a dilating channel with heat source/sink, Nonlinear Eng., 8(1) 523–533 (2019) doi: 10.1515/nleng-2018-0036 [Google Scholar]
  14. N. Saleem, S. Akram, F. Afzal, E. H. Aly, and A. Hussain, Impact of velocity second slip and inclined magnetic field on peristaltic flow coating with jeffrey fluid in tapered channel, Coatings, 10(1) (2020) doi: 10.3390/coatings10010030 [Google Scholar]
  15. M. Y. Malik, M. Bibi, F. Khan, and T. Salahuddin, Numerical solution of Williamson fluid flow past a stretching cylinder and heat transfer with variable thermal conductivity and heat generation/absorption, AIP Adv., 6(3) (2016) doi: 10.1063/1.4943398 [Google Scholar]
  16. A. K. Pandey and M. Kumar, MHD flow inside a stretching/shrinking convergent/divergent channel with heat generation/absorption and viscous-ohmic dissipation utilizing CU–water nanofluid, Comput. Therm. Sci., (10)5 457–471 (2018) doi: 10.1615/ComputThermalScien.2018020807 [Google Scholar]
  17. B. K. Jha and P. B. Malgwi, Couette flow and heat transfer of heat-generating/absorbing fluid in a rotating channel in presence of viscous dissipation, Arab J. Basic Appl. Sci., 27(1) 67–74 (2020) doi: 10.1080/25765299.2020.1715147 [Google Scholar]
  18. A. Mishra, A. K. Pandey, A. J. Chamkha, and M. Kumar, Roles of nanoparticles and heat generation/absorption on MHD flow of Ag–H2O nanofluid via porous stretching/shrinking convergent/divergent channel, J. Egypt. Math. Soc., 28(1) (2020), doi: 10.1186/s42787-020-00079-3 [Google Scholar]
  19. D. Prakash, N. Elango, and I. S. Hussain, Effect of heat generation on MHD free convective flow of viscous fluid in a vertical channel in the presence of variable properties, in AIP Conference Proceedings, 2277 (2020) doi: 10.1063/5.0025228 [Google Scholar]
  20. A. C. Cogley, W. G. Vincenti, and S. E. Gilles, Differential approximation for radiative transfer in a nongrey gas near equilibrium, AIAA J., 6(3) 551–553 (1968) doi: 10.2514/3.4538. [Google Scholar]
  21. A. Roja and B. J. Gireesha, Impact of Hall and Ion effects on MHD couple stress nanofluid flow through an inclined channel subjected to convective, hydraulic slip, heat generation, and thermal radiation, Heat Transf., 49 3314-3333 (2020) doi: 10.1002/htj.21775 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.